ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-03-18
    Description: Timely detection and quantification of lava effusion rates are crucial for volcanic hazard mitigation during effusive eruptions. Satellite-based detection methods typically exploit the exceptional radiant heat fluxes associated with lava effusion, but effusive eruptions can also emit prodigious amounts of sulphur dioxide (SO 2 ). Measuring the magnitude and temporal evolution of SO 2 emissions provides an additional means for monitoring effusive eruptions, complementing thermal monitoring. Examples of effusive eruptions detected since 1978 using ultraviolet (UV) satellite measurements of SO 2 emissions by the Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI) and Ozone Mapping and Profiler Suite (OMPS) are reviewed. During many effusive eruptions, trends in SO 2 production mimic the classic waxing–waning pattern characteristic of such events that is also seen in thermal infrared (TIR) hotspot data, suggesting a qualitative link between SO 2 emissions and lava effusion rates. An example of lava effusion rate calculation based on TOMS SO 2 measurements is presented for the 1998 eruption of Cerro Azul (Galápagos Islands), for which detailed eruption observations and independent estimates of effusion rates are available. Combining TOMS-derived SO 2 emission rates with estimates of sulphur content in Cerro Azul lavas yields lava effusion rates almost identical to independently derived values, demonstrating the utility of the technique.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-07-13
    Description: The Ozone Monitoring Instrument (OMI) is a satellite-based ultraviolet (UV) spectrometer with unprecedented sensitivity to atmospheric sulphur dioxide (SO 2 ) concentrations. Since late 2004, OMI has provided a high-quality SO 2 dataset with near-continuous daily global coverage. In this review, we discuss the principal applications of this dataset to volcano monitoring: (1) the detection and tracking of large eruption clouds, primarily for aviation hazard mitigation; and (2) the use of OMI data for long-term monitoring of volcanic degassing. This latter application is relatively novel, and despite showing some promise, requires further study into a number of key uncertainties. We discuss these uncertainties, and illustrate their potential impact on volcano monitoring with OMI through four new case studies. We also discuss potential future avenues of research using OMI data, with a particular emphasis on the need for greater integration between various monitoring strategies, instruments and datasets.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-13
    Description: The ultraviolet (UV) Ozone Monitoring Instrument (OMI), launched on NASA’s Aura satellite in July 2004, was the first space-based sensor to provide operational sulphur dioxide (SO 2 ) measurements (OMSO2) for use by the scientific community. Herein, we discuss the application of OMSO2 data for the monitoring of global volcanic SO 2 emissions, with an emphasis on lower tropospheric volcanic plumes. We review the algorithms used to produce OMSO2 data and highlight some key measurement sensitivity issues. The data processing scheme used to generate web-based OMSO2 data subsets for volcanic regions and estimate SO 2 burdens in volcanic plumes is outlined. We describe three techniques to derive SO 2 emission rates from the OMSO2 measurements, and employ one method (using single OMI pixels to estimate SO 2 fluxes) to elucidate SO 2 flux detection thresholds on a global scale. Applications of OMSO2 data to volcanic degassing studies are demonstrated using four case studies. These examples show how OMSO2 measurements correlate with changes in eruptive activity at Kilauea volcano (Hawaii), constrain small, potentially significant SO 2 releases from reawakening, historically inactive volcanoes, track long-term changes in SO 2 degassing from Nyiragongo volcano (D.R. Congo), and detect SO 2 emissions from the remote Lastarria Volcano (Chile), in the actively deforming Lazufre region.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...