ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Geological Society of America (GSA)  (2)
  • Copernicus  (1)
  • Geological Society (of London)  (1)
  • 2015-2019  (3)
  • 2010-2014  (1)
Collection
Publisher
Years
  • 2015-2019  (3)
  • 2010-2014  (1)
Year
  • 1
    Publication Date: 2016-06-30
    Description: We explore the effects of earthquake frequency and sedimentation rate on submarine slope stability by extracting correlations between morphological and geological parameters in 10 continental margins. Slope stability increases with increasing frequency of earthquakes and decreasing sedimentation rate. This increase in stability is nonlinear (power law with b 〈 0.5), accelerating with decreasing interseismic sediment accumulation. The correlation is interpreted as evidence for sediment densification and associated shear strength gain induced by repeated seismic shaking. Outliers to this correlation likely identify margins where tectonic activity leads to relatively rapid oversteepening of the slope.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-23
    Description: The Queen Charlotte Fault defines the Pacific–North America transform plate boundary in western Canada and southeastern Alaska for c. 900 km. The entire length of the fault is submerged along a continental margin dominated by Quaternary glacial processes, yet the geomorphology along the margin has never been systematically examined due to the absence of high-resolution seafloor mapping data. Hence the geological processes that influence the distribution, character and timing of mass transport events and their associated hazards remain poorly understood. Here we develop a classification of the first-order shape of the continental shelf, slope and rise to examine potential relationships between form and process dominance. We found that the margin can be split into six geomorphic groups that vary smoothly from north to south between two basic end-members. The northernmost group (west of Chichagof Island, Alaska) is characterized by concave-upwards slope profiles, gentle slope gradients (〈6°) and relatively low along-strike variance, all features characteristic of sediment-dominated siliciclastic margins. Dendritic submarine canyon/channel networks and retrogressive failure complexes along relatively gentle slope gradients are observed throughout the region, suggesting that high rates of Quaternary sediment delivery and accumulation played a fundamental part in mass transport processes. Individual failures range in area from 0.02 to 70 km 2 and display scarp heights between 10 and 250 m. Transpression along the Queen Charlotte Fault increases southwards and the slope physiography is thus progressively more influenced by regional-scale tectonic deformation. The southernmost group (west of Haida Gwaii, British Columbia) defines the tectonically dominated end-member: the continental slope is characterized by steep gradients (〉20°) along the flanks of broad, margin-parallel ridges and valleys. Mass transport features in the tectonically dominated areas are mostly observed along steep escarpments and the larger slides (up to 10 km 2 ) appear to be failures of consolidated material along the flanks of tectonic features. Overall, these observations highlight the role of first-order margin physiography on the distribution and type of submarine landslides expected to occur in particular morphological settings. The sediment-dominated end-member allows for the accumulation of under-consolidated Quaternary sediments and shows larger, more frequent slides; the rugged physiography of the tectonically dominated end-member leads to sediment bypass and the collapse of uplifted tectonic features. The maximum and average dimensions of slides are an order of magnitude smaller than those of slides observed along other (passive) glaciated margins. We propose that the general patterns observed in slide distribution are caused by the interplay between tectonic activity (long- and short-term) and sediment delivery. The recurrence (〈100 years) of M 〉 7 earthquakes along the Queen Charlotte Fault may generate small, but frequent, failures of under-consolidated Quaternary sediments within the sediment-dominated regions. By contrast, the tectonically dominated regions are characterized by the bypass of Quaternary sediments to the continental rise and the less frequent collapse of steep, uplifted and consolidated sediments.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-01
    Description: Extraordinary marine inundation scattered clasts southward on the island of Anegada, 120 km south of the Puerto Rico Trench, sometime between 1200 and 1480 calibrated years (cal yr) CE. Many of these clasts were likely derived from a fringing reef and from the sandy flat that separates the reef from the island’s north shore. The scattered clasts include no fewer than 200 coral boulders, mapped herein for the first time and mainly found hundreds of meters inland. Many of these are complete colonies of the brain coral Diploria strigosa . Other coral species represented include Orbicella (formerly Montastraea ) annularis , Porites astreoides , and Acropora palmata . Associated bioclastic carbonate sand locally contains articulated cobble-size valves of the lucine Codakia orbicularis and entire conch shells of Strombus gigas , mollusks that still inhabit the sandy shallows between the island’s north shore and a fringing reef beyond. Imbricated limestone slabs are clustered near some of the coral boulders. In addition, fields of scattered limestone boulders and cobbles near sea level extend mainly southward from limestone sources as much as 1 km inland. Radiocarbon ages have been obtained from 27 coral clasts, 8 lucine valves, and 3 conch shells. All these additional ages predate 1500 cal yr CE, all but 2 are in the range 1000–1500 cal yr CE, and 16 of 22 brain coral ages cluster in the range 1200–1480 cal yr CE. The event marked by these coral and mollusk clasts likely occurred in the last centuries before Columbus (before 1492 CE). The pre-Columbian deposits surpass Anegada’s previously reported evidence for extreme waves in post-Columbian time. The coarsest of the modern storm deposits consist of coral rubble that lines the north shore and sandy fans on the south shore; neither of these storm deposits extends more than 50 m inland. More extensive overwash, perhaps by the 1755 Lisbon tsunami, is marked primarily by a sheet of sand and shells found mainly below sea level beneath the floors of modern salt ponds. This sheet extends more than 1 km southward from the north shore and dates to the interval 1650–1800 cal yr CE. Unlike the pre-Columbian deposits, it lacks coarse clasts from the reef or reef flat; its shell assemblage is instead dominated by cerithid gastropods that were merely stirred up from a marine pond in the island’s interior. In their inland extent and clustered pre-Columbian ages, the coral clasts and associated deposits suggest extreme waves unrivaled in recent millennia at Anegada. Bioclastic sand coats limestone 4 m above sea level in areas 0.7 and 1.3 km from the north shore. A coral boulder of nearly 1 m 3 is 3 km from the north shore by way of an unvegetated path near sea level. As currently understood, the extreme flooding evidenced by these and other clasts represents either an extraordinary storm or a tsunami of nearby origin. The storm would need to have produced tsunami-like bores similar to those of 2013 Typhoon Haiyan in the Philippines. Normal faults and a thrust fault provide nearby tsunami sources along the eastern Puerto Rico Trench.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-07
    Description: A post-hurricane survey of a Caribbean island affords comparisons with geologic evidence for greater overwash at the same place. This comparison, though of limited application to other places, helps calibrate coastal geology for assessment of earthquake and tsunami potential along the Antilles Subduction Zone. The surveyed island, Anegada, is 120 km south of the Puerto Rico Trench and is near the paths of hurricanes Donna (1960) and Earl (2010), which were at or near category 4 when at closest approach. The survey focused on Earl's geologic effects, related them to the surge from Hurricane Donna, and compared them further with erosional and depositional signs of southward overwash from the Atlantic Ocean that dates to 1200–1450 AD and to 1650–1800 AD. The main finding is that the geologic effects of these earlier events dwarf those of the recent hurricanes. Hurricane Earl's geologic effects at Anegada, observed mainly in 2011, were limited to wrack deposition along many of the island's shores and salt ponds, accretion of small washover (spillover) fans on the south shore, and the suspension and deposition of microbial material from interior salt ponds. Earl's most widespread deposit at Anegada, the microbial detritus, was abundantly juxtaposed with evidence for catastrophic overwash in prior centuries. The microbial detritus formed an extensive coating up to 2 cm thick that extended into breaches in beach-ridge plains of the island's north shore, onto playas that are underlain by a sand-and-shell sheet that extends as much as 1.5 km southward from the north shore, and among southward-strewn limestone boulders pendant to outcrops as much as 1 km inland. Earl's spillover fans also contrast with a sand-and-shell sheet, which was dated previously to 1650–1800, by being limited to the island's south shore and by extending inland a few tens of meters at most. These findings complement those reported in this issue by Michaela Spiske and Robert Halley (Spiske and Halley, 2014), who studied a coral-rubble ridge that lines part of Anegada's north shore. Spiske and Halley attribute the ridge to storms that were larger than Earl. But they contrast the ridge with coral boulders that were scattered hundreds of meters inland by overwash in 1200–1450.
    Print ISSN: 1680-7340
    Electronic ISSN: 1680-7359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...