ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-11-09
    Description: The genome of potato, a major global food crop, was recently sequenced. The work presented here details the integration of the potato reference genome (DM) with a new sequence-tagged site marker–based linkage map and other physical and genetic maps of potato and the closely related species tomato. Primary anchoring of the DM genome assembly was accomplished by the use of a diploid segregating population, which was genotyped with several types of molecular genetic markers to construct a new ~936 cM linkage map comprising 2469 marker loci. In silico anchoring approaches used genetic and physical maps from the diploid potato genotype RH89-039-16 (RH) and tomato. This combined approach has allowed 951 superscaffolds to be ordered into pseudomolecules corresponding to the 12 potato chromosomes. These pseudomolecules represent 674 Mb (~93%) of the 723 Mb genome assembly and 37,482 (~96%) of the 39,031 predicted genes. The superscaffold order and orientation within the pseudomolecules are closely collinear with independently constructed high density linkage maps. Comparisons between marker distribution and physical location reveal regions of greater and lesser recombination, as well as regions exhibiting significant segregation distortion. The work presented here has led to a greatly improved ordering of the potato reference genome superscaffolds into chromosomal "pseudomolecules".
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-06-02
    Description: Cotton seed trichomes are the most important source of natural fibers globally. The major fiber thickness properties influence the price of the raw material, and the quality of the finished product. The recessive immature fiber ( im ) gene reduces the degree of fiber cell wall thickening by a process that was previously shown to involve mitochondrial function in allotetraploid Gossypium hirsutum . Here, we present the fine genetic mapping of the im locus, gene expression analysis of annotated proteins near the locus, and association analysis of the linked markers. Mapping-by-sequencing identified a 22-bp deletion in a pentatricopeptide repeat (PPR) gene that is completely linked to the immature fiber phenotype in 2837 F 2 plants, and is absent from all 163 cultivated varieties tested, although other closely linked marker polymorphisms are prevalent in the diversity panel. This frame-shift mutation results in a transcript with two long open reading frames: one containing the N-terminal transit peptide that targets mitochondria, the other containing only the RNA-binding PPR domains, suggesting that a functional PPR protein cannot be targeted to mitochondria in the im mutant. Taken together, these results suggest that PPR gene Gh_A03G0489 is involved in the cotton fiber wall thickening process, and is a promising candidate gene at the im locus. Our findings expand our understanding of the molecular mechanisms that modulate cotton fiber fineness and maturity, and may facilitate the development of cotton varieties with superior fiber attributes.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-10-06
    Description: Physical appearance traits, such as feather-crested head, comb size and type, beard, wattles size, and feathered feet, are used to distinguish between breeds of chicken and also may be associated with economic traits. In this study, a genome-wide linkage analysis was used to identify candidate regions and genes for physical appearance traits and to potentially provide further knowledge of the molecular mechanisms that underlie these traits. The linkage analysis was conducted with an F2 population derived from Beijing-You chickens and a commercial broiler line. Single-nucleotide polymorphisms were analyzed using the Illumina 60K Chicken SNP Beadchip. The data were used to map quantitative trait loci and genes for six physical appearance traits. A 10-cM/0.51-Mb region (0.0–10.0 cM/0.00–0.51 Mb) with 1% genome-wide significant level on LGE22C19W28_E50C23 linkage group (LGE22) for crest trait was identified, which is likely very closely linked to the HOXC8 . A QTL with 5% chromosome-wide significant level for comb weight, which partly overlaps with a region identified in a previous study, was identified at 74 cM/25.55 Mb on chicken ( Gallus gallus ; GG) chromosome 3 ( i.e. , GGA3). For beard and wattles traits, an identical region 11 cM/2.23 Mb (0.0–11.0 cM/0.00–2.23 Mb) including WNT3 and GH genes on GGA27 was identified. Two QTL with 1% genome-wide significant level for feathered feet trait, one 9-cM/2.80-Mb (48.0-57.0/13.40-16.20 Mb) region on GGA13, and another 12-cM/1.45-Mb (41.0–53.0 cM/11.37–12.82 Mb) region on GGA15 were identified. These candidate regions and genes provide important genetic information for the physical appearance traits in chicken.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-01-11
    Description: Tandem repeats (TRs) extensively exist in the genomes of prokaryotes and eukaryotes. Based on the sequenced genomes and gene annotations of 31 plant and algal species in Phytozome version 8.0 ( http://www.phytozome.net/ ), we examined TRs in a genome-wide scale, characterized their distributions and motif features, and explored their putative biological functions. Among the 31 species, no significant correlation was detected between the TR density and genome size. Interestingly, green alga Chlamydomonas reinhardtii (42,059 bp/Mbp) and castor bean Ricinus communis (55,454 bp/Mbp) showed much higher TR densities than all other species (13,209 bp/Mbp on average). In the 29 land plants, including 22 dicots, 5 monocots, and 2 bryophytes, 5'-UTR and upstream intergenic 200-nt (UI200) regions had the first and second highest TR densities, whereas in the two green algae ( C. reinhardtii and Volvox carteri ) the first and second highest densities were found in intron and coding sequence (CDS) regions, respectively. In CDS regions, trinucleotide and hexanucleotide motifs were those most frequently represented in all species. In intron regions, especially in the two green algae, significantly more TRs were detected near the intron–exon junctions. Within intergenic regions in dicots and monocots, more TRs were found near both the 5' and 3' ends of genes. GO annotation in two green algae revealed that the genes with TRs in introns are significantly involved in transcriptional and translational processing. As the first systematic examination of TRs in plant and green algal genomes, our study showed that TRs displayed nonrandom distribution for both intragenic and intergenic regions, suggesting that they have potential roles in transcriptional or translational regulation in plants and green algae.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-10
    Description: Construction of high-density genetic linkage maps is crucially important for quantitative trait loci (QTL) studies, and they are more useful when integrated with physical maps. Such integrated maps are valuable genome resources for fine mapping of QTL, comparative genomics, and accurate and efficient whole-genome assembly. Previously, we established both linkage maps and a physical map for channel catfish, Ictalurus punctatus , the dominant aquaculture species in the United States. Here we added 2030 BAC end sequence (BES)-derived microsatellites from 1481 physical map contigs, as well as markers from singleton BES, ESTs, anonymous microsatellites, and SNPs, to construct a second-generation linkage map. Average marker density across the 29 linkage groups reached 1.4 cM/marker. The increased marker density highlighted variations in recombination rates within and among catfish chromosomes. This work effectively anchored 44.8% of the catfish BAC physical map contigs, covering ~52.8% of the genome. The genome size was estimated to be 2546 cM on the linkage map, and the calculated physical distance per centimorgan was 393 Kb. This integrated map should enable comparative studies with teleost model species as well as provide a framework for ordering and assembling whole-genome scaffolds.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-04-08
    Description: In recent years, genome engineering technology has provided unprecedented opportunities for site-specific modification of biological genomes. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) 9 is one such means that can target a specific genome locus. It has been applied in human cells and many other organisms. Meanwhile, to efficiently enrich targeted cells, several surrogate systems have also been developed. However, very limited information exists on the application of CRISPR/Cas9 in chickens. In this study, we employed the CRISPR/Cas9 system to induce mutations in the peroxisome proliferator-activated receptor- ( PPAR -), ATP synthase epsilon subunit ( ATP5E ), and ovalbumin ( OVA ) genes in chicken DF-1 cells. The results of T7E1 assays showed that the mutation rate at the three different loci was 0.75%, 0.5%, and 3.0%, respectively. In order to improve the mutation efficiency, we used the Puro R gene for efficient enrichment of genetically modified cells with the surrogate reporter system. The mutation rate, as assessed via the T7E1 assay, increased to 60.7%, 61.3%, and 47.3%, and subsequent sequence analysis showed that the mutation efficiency increased to 94.7%, 95%, and 95%, respectively. In addition, there were no detectable off-target mutations in three potential off-target sites using the T7E1 assay. As noted above, the CRISPR/Cas9 system is a robust tool for chicken genome editing.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-06
    Description: As high-strength cotton fibers are critical components of high quality cotton, developing cotton cultivars with high-strength fibers as well as high yield is a top priority for cotton development. Recently, chromosome segment substitution lines (CSSLs) have been developed from high-yield Upland cotton ( Gossypium hirsutum ) crossed with high-quality Sea Island cotton ( G. barbadense ). Here, we constructed a CSSL population by crossing CCRI45, a high-yield Upland cotton cultivar, with Hai1, a Sea Island cotton cultivar with superior fiber quality. We then selected two CSSLs with significantly higher fiber strength than CCRI45 (MBI7747 and MBI7561), and one CSSL with lower fiber strength than CCRI45 (MBI7285), for further analysis. We sequenced all four transcriptomes at four different time points postanthesis, and clustered the 44,678 identified genes by function. We identified 2200 common differentially-expressed genes (DEGs): those that were found in both high quality CSSLs (MBI7747 and MBI7561), but not in the low quality CSSL (MBI7285). Many of these genes were associated with various metabolic pathways that affect fiber strength. Upregulated DEGs were associated with polysaccharide metabolic regulation, single-organism localization, cell wall organization, and biogenesis, while the downregulated DEGs were associated with microtubule regulation, the cellular response to stress, and the cell cycle. Further analyses indicated that three genes, XLOC_036333 [mannosyl-oligosaccharide-α-mannosidase ( MNS1 )], XLOC_029945 ( FLA8 ), and XLOC_075372 ( snakin-1 ), were potentially important for the regulation of cotton fiber strength. Our results suggest that these genes may be good candidates for future investigation of the molecular mechanisms of fiber strength formation and for the improvement of cotton fiber quality through molecular breeding.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-06-18
    Description: Polydactyly occurs in some chicken breeds, but the molecular mechanism remains incompletely understood. Combined genome-wide linkage analysis and association study (GWAS) for chicken polydactyly helps identify loci or candidate genes for the trait and potentially provides further mechanistic understanding of this phenotype in chickens and perhaps other species. The linkage analysis and GWAS for polydactyly was conducted using an F2 population derived from Beijing-You chickens and commercial broilers. The results identified two QTLs through linkage analysis and seven single-nucleotide polymorphisms (SNPs) through GWAS, associated with the polydactyly trait. One QTL located at 35 cM on the GGA2 was significant at the 1% genome-wise level and another QTL at the 1% chromosome-wide significance level was detected at 39 cM on GGA19. A total of seven SNPs, four of 5% genome-wide significance (P 〈 2.98 x 10 –6 ) and three of suggestive significance (5.96 x 10 –5 ) were identified, including two SNPs (GGaluGA132178 and Gga_rs14135036) in the QTL on GGA2. Of the identified SNPs, the eight nearest genes were sonic hedgehog ( SHH ), limb region 1 homolog (mouse) ( LMBR1 ), dipeptidyl-peptidase 6, transcript variant 3 ( DPP6 ), thyroid-stimulating hormone, beta ( TSHB ), sal-like 4 (Drosophila) ( SALL4 ), par-6 partitioning defective 6 homolog beta ( Caenorhabditis elegans ) ( PARD6B ), coenzyme Q5 ( COQ5 ), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, etapolypeptide ( YWHAH ). The GWAS supports earlier reports of the importance of SHH and LMBR1 as regulating genes for polydactyly in chickens and other species, and identified others, most of which have not previously been associated with limb development. The genes and associated SNPs revealed here provide detailed information for further exploring the molecular and developmental mechanisms underlying polydactyly.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-10-04
    Description: Fascin2 (FSCN2) is an actin cross-linking protein that is mainly localized in retinas and in the stereocilia of hair cells. Earlier studies showed that a deletion mutation in human FASCIN2 ( FSCN2 ) gene could cause autosomal dominant retinitis pigmentosa. Recent studies have indicated that a missense mutation in mouse Fscn2 gene (R109H) can contribute to the early onset of hearing loss in DBA/2J mice. To explore the function of the gene, Fscn2 was knocked out using TALEN (transcription activator-like effector nucleases) on the C57BL/6J background. Four mouse strains with deletions of 1, 4, 5, and 41 nucleotides in the target region of Fscn2 were developed. F1 heterozygous ( Fscn2 +/– ) mice carrying the same deletion of 41 nucleotides were mated to generate the Fscn2 –/– mice. As a result, the Fscn2 –/– mice showed progressive hearing loss, as measured in the elevation of auditory brainstem-response thresholds. The hearing impairment began at age 3 weeks at high-stimulus frequencies and became most severe at age 24 weeks. Moreover, degeneration of hair cells and loss of stereocilia were remarkable in Fscn2 –/– mice, as revealed by F-actin staining and scanning electron microscopy. Furthermore, compared to the controls, the Fscn2 –/– mice displayed significantly lower electroretinogram amplitudes and thinner retinas at 8, 16, and 24 weeks. These results demonstrate that, in C57BL/6Jmice, Fscn2 is essential for maintaining ear and eye function and that a null mutation of Fscn2 leads to progressive hearing loss and retinal degeneration.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...