ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Genetics Society of America (GSA)  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-06-01
    Description: Termination of RNA Polymerase II (Pol II) activity serves a vital cellular role by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae , Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5'-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis -acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...