ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-04
    Description: Cyclin-dependent kinases (CDK) and their compulsory cofactors, the cyclins, are the two key classes of regulatory molecules that determine the eukaryotic cell's progress through the cell cycle by substrate phosphorylation. Cdk1 forms complexes with B-type cyclins and phosphorylates a number of substrates as cells prepare to enter mitosis. CYB-3 (Cyclin B3) is a B-type cyclin that has been recently shown to be required for the timely metaphase-to-anaphase transition, presumably by alleviating a spindle assembly checkpoint (SAC) block. Previously, we have shown that doubling the CYB-3 dosage suppresses sterility in the absence of the essential SAC component MDF-1 /Mad1. Here we demonstrate the importance of the Mos1-mediated single-copy insertion method for understanding the effects of gene dosage by generating strains that have more (two or three) copies of the cyb-3 in wild-type and mdf-1 ( gk2 ) backgrounds to investigate dosage effect of CYB-3 on mitotic progression as well as development and fertility in the absence and the presence of the MDF-1 checkpoint component. We show that tripling the dosage of CYB-3 results in a significantly variable metaphase-to-anaphase transition, both in wild-type and mdf-1 ( gk2 ) mutant backgrounds. Although a majority of embryos initiate anaphase onset normally, a significant number of embryos initiate anaphase with a delay. We also show that tripling the dosage of CYB-3 has no effect on viability in the wild-type background; however, it does reduce the sterility caused by the absence of MDF-1 . Together, these data reveal that proper dosage of CYB-3 is important for precision of timely execution of anaphase onset regardless of the presence of the MDF-1 checkpoint component.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-06
    Description: Using combined genetic mapping, Illumina sequencing, bioinformatics analyses, and experimental validation, we identified 60 essential genes from 104 lethal mutations in two genomic regions of Caenorhabditis elegans totaling ~14 Mb on chromosome III(mid) and chromosome V(left). Five of the 60 genes had not previously been shown to have lethal phenotypes by RNA interference depletion. By analyzing the regions around the lethal missense mutations, we identified four putative new protein functional domains. Furthermore, functional characterization of the identified essential genes shows that most are enzymes, including helicases, tRNA synthetases, and kinases in addition to ribosomal proteins. Gene Ontology analysis indicated that essential genes often encode for enzymes that conduct nucleic acid binding activities during fundamental processes, such as intracellular DNA replication, transcription, and translation. Analysis of essential gene shows that they have fewer paralogs, encode proteins that are in protein interaction hubs, and are highly expressed relative to nonessential genes. All these essential gene traits in C. elegans are consistent with those of human disease genes. Most human orthologs (90%) of the essential genes in this study are related to human diseases. Therefore, functional characterization of essential genes underlines their importance as proxies for understanding the biological functions of human disease genes.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...