ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-08
    Description: During the life cycle of shellfish, larval development, especially metamorphosis, has a vital influence on the dynamics, distribution, and recruitment of natural populations, as well as seed breeding. Rapana venosa , a carnivorous gastropod, is an important commercial shellfish in China, and is an ecological invader in the United States, Argentina, and France. However, information about the mechanism of its early development is still limited, because research in this area has long suffered from a lack of genomic resources. In this study, 15 digital gene expression (DGE) libraries from five developmental stages of R. venosa were constructed and sequenced on the IIIumina Hi-Sequation 2500 platform. Bioinformaticsanalysis identified numerous differentially and specifically expressed genes, which revealed that genes associated with growth, nervous system, digestive system, immune system, and apoptosis participate in important developmental processes. The functional analysis of differentially expressed genes was further implemented by gene ontology, and Kyoto encyclopedia of genes and genomes enrichment. DGE profiling provided a general picture of the transcriptomic activities during the early development of R. venosa , which may provide interesting hints for further study. Our data represent the first comparative transcriptomic information available for the early development of R. venosa , which is a prerequisite for a better understanding of the physiological traits controlling development.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-12-05
    Description: The veined rapa whelk ( Rapana venosa ) is widely consumed in China. Nevertheless, it preys on oceanic bivalves, thereby reducing this resource worldwide. Its larval metamorphosis comprises a transition from pelagic to benthic form, which involves considerable physiological and structural changes and has vital roles in its natural populations and commercial breeding. Thus, understanding the endogenous microRNAs (miRNAs) that drive metamorphosis is of great interest. This is the first study to use high-throughput sequencing to examine the alterations in miRNA expression that occur during metamorphosis in a marine gastropod. A total of 195 differentially expressed miRNAs were obtained. Sixty-five of these were expressed during the transition from precompetent to competent larvae. Thirty-three of these were upregulated and the others were downregulated. Another 123 miRNAs were expressed during the transition from competent to postlarvae. Ninety-six of these were upregulated and the remaining 27 were downregulated. The expression of miR-276-y, miR-100-x, miR-183-x, and miR-263-x showed a 〉100-fold change during development, while the miR-242-x and novel-m0052-3p expression levels changed over 3000-fold. Putative target gene coexpression, gene ontology, and pathway analyses suggest that these miRNAs play important parts in cell proliferation, migration, apoptosis, metabolic regulation, and energy absorption. Twenty miRNAs and their target genes involved in ingestion, digestion, cytoskeleton, cell adhesion, and apoptosis were identified. Nine of them were analyzed with real-time polymerase chain reaction (PCR), which showed an inverse correlation between the miRNAs and their relative expression levels. Our data elucidate the role of miRNAs in R. venosa metamorphic transition and serve as a solid basis for further investigations into regulatory mechanisms of gastropod metamorphosis.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-08
    Description: SUMMARYThe aim of the current study was to investigate the effects of bacteriocin of Ruminococcus albus 7 that is expressed by yeast on growth performance, caecal flora, caecal fermentation and immunity function of broilers. A total of 180, one-day-old healthy broiler chicks were randomly divided into three groups: control, bacteriocin (2·5 g/kg feed) and nosiheptide (NHT) (2·5 mg/kg, as antibiotic control). Growth performance, caecal flora, caecal fermentation products and immunoglobulin (Ig) concentration were determined when chicks were 21 and 35 days old. The gene expression of avian β-defensin (AvBD) and mucin (MUC2) were measured at 35 days old. The supplementation of bacteriocin and NHT had no significant effect on body weight gain (BWG) during the experimental period. Bacteriocin supplementation significantly enhanced the growth of Lactobacillus (P
    Print ISSN: 0021-8596
    Electronic ISSN: 1469-5146
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...