ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GSL (Geological Society London)
    In:  In: European Lithosphere Dynamics. , ed. by Gee, D. G. and Stephenson, R. A. Geological Society London Memoirs, 32 . GSL (Geological Society London), London, pp. 43-56, 14 pp.
    Publication Date: 2021-04-06
    Description: A new Moho depth map has been assembled for Western and Central Europe and the Western Mediterranean area that is exclusively based on published regional Moho depth maps. Tectonic overlays summarize Caledonian and Variscan tectonic units, Permo-Carboniferous fault systems and magmatic provinces, Mesozoic and Cenozoic rift-wrench systems, areas of intraplate compression, the outlines of Alpine orogens and the distribution of oceanic crust. Based on a comparison of these overlays with the Moho depth map we assess processes that controlled the evolution of the crust in the various parts of Europe through time. The present-day crustal configuration of Western and Central Europe results from polyphase Late Palaeozoic to recent lithospheric deformation that overprinted the margin of the Proterozoic East European Craton and particularly the Caledonian and Variscan crustal domains. Following consolidation of the Caledonides, their crustal roots were destroyed in conjunction with Devonian wrench tectonics and back-arc rifting. During the Permo-Carboniferous tectonomagmatic cycle, wrench faulting disrupted the crust of the Variscan Orogen and its foreland and the lithosphere of these regions was thermally destabilized. Late Permian and Mesozoic re-equilibration of the lithosphere-asthenosphere system was interrupted by the development of the Arctic-North Atlantic, Tethyan and associated rift systems. During the Alpine orogenic cycle, intraplate compressional stresses controlled basin inversion-related crustal thickening and lithospheric folding, as well as the evolution of the Rhine-Rhone rift system. Variably deep crustal roots characterize the Alpine orogenic chains. Neogene back-arc extension disrupted the eastern Pyrenees, Betic-Balearic, Apennine and Dinarides orogens.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...