ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    GSA (Geological Society of America)
    In:  Geosphere, 14 (2). pp. 395-418.
    Publication Date: 2021-03-19
    Description: The subducting oceanic lithosphere may carry a large amount of chemically bound water into the deep Earth interior, returning water to the mantle, facilitating melting, and hence keeping the mantle mobile and, in turn, nurturing plate tectonics. Bending-related faulting in the trench–outer rise region prior to subduction has been recognized to be an important process, promoting the return flux of water into the mantle. Extensional faults in the trench–outer rise are opening pathways into the lithosphere, supporting hydration of the lithosphere, including alteration of dry peridotite to water-rich serpentine. In this paper, we review and summarize recent work suggesting that bend faulting is indeed a key process in the global water cycle, albeit not yet well understood. Two features are found in a worldwide compilation of tomographic velocity models derived from wide-angle seismic data, indicating that oceanic lithosphere is strongly modified when approaching a deep-sea trench: (1) seismic velocities in both the lower crust and upper mantle are significantly reduced compared to the structure found in the vicinity of mid-ocean ridges and in mature crust away from subduction zones; and (2) profiles shot perpendicular to the trench show both crustal and upper mantle velocities decreasing systematically approaching the trench axis, highlighting an evolutionary process because velocity reduction is related to deformation, alteration, and hydration. P-wave velocity anomalies suggest that mantle serpentinization at trenches is a global feature of all subducting oceanic plates older than 10–15 Ma. Yet, the degree of serpentinization in the uppermost mantle is not firmly established, but may range from 〈4% to as much as 20%, assuming that velocity reduction is solely due to hydration. A case study from the Nicaraguan trench argues that the ratio between P-wave and S-wave velocity (Vp/Vs) is a key parameter in addressing the amount of hydration. In the crust, the Vp/Vs ratio increases from 〈1.8 away from the trench to 〉1.9 in the trench, supporting the development of water-filled cracks where bend faulting occurs. In the mantle, the Vp/Vs ratio increases from ∼1.75 in the outer rise to values of 〉1.8 at the trench, indicating the increasing intensity of serpentinization.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-24
    Description: High-temperature (〉300 °C) off-axis hydrothermal systems found along the slow-spreading Mid-Atlantic Ridge are apparently consistently located at outcropping fault zones. While preferential flow of hot fluids along highly permeable, fractured rocks seems intuitive, such efficient flow inevitably leads to the entrainment of cold ambient seawater. The temperature drop this should cause is difficult to reconcile with the observed high-temperature black smoker activity and formation of associated massive sulfide ore deposits. Here we combine newly acquired seismological data from the high-temperature, off-axis Logatchev 1 hydrothermal field (LHF1) with numerical modeling of hydrothermal flow to solve this apparent contradiction. The data show intense off-axis seismicity with focal mechanisms suggesting a fault zone dipping from LHF1 toward the ridge axis. Our simulations predict high-temperature venting at LHF1 only for a limited range of fault widths and permeability contrasts, expressed as the fault's relative transmissibility (the product of the two parameters). The relative transmissibility must be sufficient to "capture" a rising hydrothermal plume and redirect it toward LHF1 but low enough to prevent extensive mixing with ambient cold fluids. Furthermore, the temperature drop associated with any high permeability zone in heterogeneous crust may explain why a significant part of hydrothermal discharge along slow-spreading ridges occurs at low temperatures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-24
    Description: Splay faults, large thrust faults emerging from the plate boundary to the seafloor in subduction zones, are considered to enhance tsunami generation by transferring slip from the very shallow dip of the megathrust onto steeper faults, thus increasing vertical displacement of the seafloor. These structures are predominantly found offshore, and are therefore difficult to detect in seismicity studies, as most seismometer stations are located onshore. The Mw (moment magnitude) 8.8 Maule earthquake on 27 February 2010 affected ∼500 km of the central Chilean margin. In response to this event, a network of 30 ocean-bottom seismometers was deployed for a 3 month period north of the main shock where the highest coseismic slip rates were detected, and combined with land station data providing onshore as well as offshore coverage of the northern part of the rupture area. The aftershock seismicity in the northern part of the survey area reveals, for the first time, a well-resolved seismically active splay fault in the submarine forearc. Application of critical taper theory analysis suggests that in the northernmost part of the rupture zone, coseismic slip likely propagated along the splay fault and not the subduction thrust fault, while in the southern part it propagated along the subduction thrust fault and not the splay fault. The possibility of splay faults being activated in some segments of the rupture zone but not others should be considered when modeling slip distributions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-05
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: The depth of earthquakes along mid-ocean ridges is restricted by the relatively thin brittle lithosphere that overlies a hot, upwelling mantle. With decreasing spreading rate, earthquakes may occur deeper in the lithosphere, accommodating strain within a thicker brittle layer. New data from the ultraslow-spreading Mid-Cayman Spreading Center (MCSC) in the Caribbean Sea illustrate that earthquakes occur to 10 km depth below seafloor and, hence, occur deeper than along most other slow-spreading ridges. The MCSC spreads at 15 mm/yr full rate, while a similarly well-studied obliquely opening portion of the Southwest Indian Ridge (SWIR) spreads at an even slower rate of ~8 mm/yr if the obliquity of spreading is considered. The SWIR has previously been proposed to have earthquakes occurring as deep as 32 km, but no shallower than 5 km. These characteristics have been attributed to the combined effect of stable deformation of serpentinized mantle and an extremely deep thermal boundary layer. In the context of our MCSC results, we reanalyze the SWIR data and find a maximum depth of seismicity of 17 km, consistent with compilations of spreading-rate dependence derived from slow- and ultraslow-spreading ridges. Together, the new MCSC data and SWIR reanalysis presented here support the hypothesis that depth-seismicity relationships at mid-ocean ridges are a function of their thermal-mechanical structure as reflected in their spreading rate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: The nature of incoming sediments is a key controlling factor for the occurrence of megathrust earthquakes in subduction zones. In the 2011 Mw 9 Tohoku earthquake (offshore Japan), smectite-rich clay minerals transported by the subducting oceanic plate played a critical role in the development of giant interplate coseismic slip near the trench. Recently, we conducted intensive controlled-source seismic surveys at the northwestern part of the Pacific plate to investigate the nature of the incoming oceanic plate. Our seismic reflection data reveal that the thickness of the sediment layer between the seafloor and the acoustic basement is a few hundred meters in most areas, but there are a few areas where the sediments appear to be extremely thin. Our wide-angle seismic data suggest that the acoustic basement in these thin-sediment areas is not the top of the oceanic crust, but instead a magmatic intrusion within the sediments associated with recent volcanic activity. This means that the lower part of the sediments, including the smectite-rich pelagic red-brown clay layer, has been heavily disturbed and thermally metamorphosed in these places. The giant coseismic slip of the 2011 Tohoku earthquake stopped in the vicinity of a thin-sediment area that is just beginning to subduct. Based on these observations, we propose that post-spreading volcanic activity on the oceanic plate prior to subduction is a factor that can shape the size and distribution of interplate earthquakes after subduction through its disturbance and thermal metamorphism of the local sediment layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-02-08
    Description: The Tyrrhenian Basin is a region created by Neogene extensional tectonics related to slab rollback of the east-southeast–migrating Apennine subduction system, commonly believed to be actively underthrusting the Calabrian arc. A compilation of 〉12,000 km of multichannel seismic profiles, much of them recently collected or reprocessed, provided closer scrutiny and the mapping of previously undetected large compressive structures along the Tyrrhenian margin. This new finding suggests that Tyrrhenian Basin extension recently ceased. The ongoing compressional reorganization of the basin indicates a change of the regional stress field in the area, confirming that slab rollback is no longer a driving mechanism for regional kinematics, now dominated by the Africa-Eurasia lithospheric collision.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Plate tectonics describes oceanic transform faults as conservative strike-slip boundaries, where lithosphere is neither created nor destroyed. Therefore, seafloor accreted at ridge-transform intersections should follow a similar subsidence trend with age as lithosphere that forms away from ridge-transform intersections. Yet, recent compilations of high-resolution bathymetry show that the seafloor is significantly deeper along transform faults than at the adjacent fracture zones. We present residual mantle Bouguer anomalies, a proxy for crustal thickness, for 11 transform fault systems across the full range of spreading rates. Our results indicate that the crust is thinner in the transform deformation zone than in either the adjacent fracture zones or the inside corner regions. Consequently, oceanic transform faulting appears not only to thin the transform valley crust but also leads to a secondary phase of magmatic addition at the transition to the passive fracture zones. These observations challenge the concept of transform faults being conservative plate boundaries.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Subduction zones may develop submarine spreading centers that occur on the overriding plate behind the volcanic arc. In these back-arc settings, the subducting slab controls the pattern of mantle advection and may entrain hydrous melts from the volcanic arc or slab into the melting region of the spreading ridge. We recorded seismic data across the Western Mariana Ridge (WMR, northwestern Pacific Ocean), a remnant island arc with back-arc basins on either side. Its margins and both basins show distinctly different crustal structure. Crust to the west of the WMR, in the Parece Vela Basin, is 4–5 km thick, and the lower crust indicates seismic P-wave velocities of 6.5–6.8 km/s. To the east of the WMR, in the Mariana Trough Basin, the crust is ~7 km thick, and the lower crust supports seismic velocities of 7.2–7.4 km/s. This structural diversity is corroborated by seismic data from other back-arc basins, arguing that a chemically diverse and heterogeneous mantle, which may differ from a normal mid-ocean-ridge–type mantle source, controls the amount of melting in back-arc basins. Mantle heterogeneity might not be solely controlled by entrainment of hydrous melt, but also by cold or depleted mantle invading the back-arc while a subduction zone reconfigures. Crust formed in back-arc basins may therefore differ in thickness and velocity structure from normal oceanic crust.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-02-07
    Description: Conceptual models of magma-poor rifting are strongly based on studies of the nature of the basement in the continent-to-ocean transition of the Iberia Abyssal Plain, and suggest that exhumed mantle abuts extended continental crust. Yet, basement has only been sampled at a few sites, and its regional nature and the transition to seafloor spreading inferred from relatively low-resolution geophysical data are inadequately constrained. This uncertainty has led to a debate about the subcontinental or seafloor-spreading origin of exhumed mantle and the rift-related or oceanic nature of magmatic crust causing the magnetic J anomaly. Different interpretations change the locus of break-up by 〉100 km and lead to debate of the causative processes. We present the tomographic velocity structure along a 360-km-long seismic profile centered at the J anomaly in the Iberia Abyssal Plain. Rather than delineating an excessive outpouring of magma, the J anomaly occurs over subdued basement. Furthermore, its thin crust shows the characteristic layering of oceanic crust and is juxtaposed to exhumed mantle, marking the onset of magma-starved seafloor spreading, which yields the westward limit of an ~160-km-wide continent–ocean transition zone where continental mantle has been unroofed. This zone is profoundly asymmetric with respect to its conjugate margin, suggesting that the majority of mantle exhumation occurs off Iberia. Because the J anomaly is related to the final break-up and emplacement of oceanic crust, it neither represents synrift magmatism nor defines an isochron, and hence it poorly constrains plate tectonic reconstructions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...