ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GFZ Data Services  (32)
  • 1
    Publication Date: 2023-02-08
    Description: Abstract
    Description: The KISS network was installed in the frame of the "Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system" project and recorded data between summer 2015 and summer 2016 in one of the world's largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Seismic Network
    Format: ~320G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-07-31
    Description: Abstract
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; Seismological stations ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 DATA SEARCH AND RETRIEVAL ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 ARCHIVING ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; seismology
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-12
    Description: Imaging the internal structure of faults remains challenging using conventional seismometers. Here, the authors use deployed fibre-optic cables to obtain strain data and identify faults and volcanic dykes in Iceland. Such fibre-optic networks are pervasive for telecommu-nication and could be used for hazard assessment. Natural hazard prediction and efficient crustal exploration requires dense seismic observa-tions both in time and space. Seismological techniques provide ground-motion data, whose accuracy depends on sensor characteristics and spatial distribution. In the manuscript Jousset et al. (2018), we demonstrate that strain determination is possible with conventional fibre-optic cables deployed for telecommunication. Extending recently distributed acoustic sensing (DAS) studies, we present high resolution spatially un-aliased broadband strain data. We recorded seismic signals from natural and man-made sources with 4-m spacing along a 15-km-long fibre-optic cable layout on Reykjanes Peninsula, SW Iceland.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: The SWATH-D experiment is dense deployment of 154 seismic stations in the Central and Eastern Alps between Italy and Austria, complementing the larger-scale sparser AlpArray Seismic Network (AASN). SWATH-D will provide high resolution images from the surface into the upper mantle, and allow observations of local seismicity. SWATH-D focuses on a key area of the Alps where the hypothesized flip in subduction polarity has been suggested, and where an earlier seismic profile (TRANSALP) has imaged a jump in the Moho. Where mains power is available (at ca. 80 sites) stations are providing realtime data via the cellphone network and are equipped with Güralp CMG-3EPSC (60s) seismometers and Earth Data Recorders EDR-210. The rest of the stations are offline and consist mainly of Nanometrics Trillium Compact (120s) and Güralp CMG-3EPSC (60s) seismometers equipped with either Omnirecs CUBE3 or PR6-24 Earth Data Loggers. All stations are equipped with external GPS antennas and the sampling rate is 100 Hz (Heit, et al., 2018). The network will operate for 2 years starting in July 2017. The Swath-D data will be used directly by 20 individual proposals of the MB-4D Priority Program (Mountain Building Processes in Four Dimensions, 2017) of the German Research Foundation (DFG) and data products derived from it will contribute to additional 13 proposals. SWATH-D is thus an important link between the MB-4D Priority Program and the international AlpArray communities and a scientific service to many of the proposals within the DFG Priority Program. Waveform data are available from the GEOFON data centre, under network code ZS, and are embargoed until August 2023. After the end of embargo, data will be openly available under CC-BY 4.0 license according to GIPP-rules.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2020-02-12
    Description: Dataset
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2020-02-12
    Description: The KISS network was installed in the frame of the "Klyuchevskoy Investigation - Seismic Structure of an extraordinary volcanic system" project and recorded data between summer 2015 and summer 2016 in one of the world's largest clusters of subduction volcanoes - the Klyuchevskoy volcanic group (KVG). It is located in eastern Russia at the northern end of the Kuril-Kamchatka subduction zone close to its intersection with the Aleutian arc and the north-western termination of Hawaii-Emperor seamount chain. Additional to the 4700m high Mount Klyuchevskoy the KVG contains 12 other volcanoes that have together erupted about 1 cubic meter rock per second averaged over the past 10,000 years. Among those Klyuchevskoy, Bezymianny and Tolbachik were the most active ones during the last decades with eruptions styles ranging from explosive to Hawaiian-type. The KISS experiment is designed to investigate the volcanic and seismic processes and its structural setting in the KVG. The network covers a circular region of about 80km diameter with some linear extensions. It includes data from 77 temporary seismic stations with broadband and short period sensors that were installed on concrete plates in about 60cm deep holes. Due to the local conditions the stations were battery powered and could not be serviced during the experiment. GPS reception of the digitizers was not continuous at all stations due to thick snow cover and vegetation. Waveform data are available from the GEOFON data centre, under network code X9, and are embargoed until end of 2019.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-09-21
    Description: The 208 km long profile 3B/MVE (West) was recorded in 1990 as part of the joint seismic reflection venture DEKORP 1990-3/MVE (Muenchberg-Vogtland-Erzgebirge) between the two former German Republics shortly before their unification. The aim of DEKORP 1990-3/MVE was to explore the structure of the crust from the Rhenish Shield through the Bohemian Massif to the Ore Mountains. The entire profile consists of DEKORP 3A, DEKORP 3B/MVE (West) and its prolongation to the east DEKORP 3B/MVE (East). Its total length amounts to about 600 km. 24 short seismic cross lines and associated 3D blocks with single fold coverage were also recorded. The seismic survey of 3B/MVE (West) was performed to investigate the deep crustal structure and the transition zone between the Rhenohercynian and Saxothuringian units with high-fold near-vertical incidence vibroseis acquisition. The results were compared with the results from the surveys DEKORP 1 and DEKORP 2, running nearly parallel to the line 3B/MVE (West). Details of the 3B/MVE (West) experiment, its preliminary results and interpretations may be obtained from DEKORP Research Group (A) et al. (1994) and DEKORP Research Group (C) et al. (1994). The Technical Report of line 3B/MVE (West) gives complete information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The mainly NW-SE running DEKORP 3B/MVE (West) runs perpendicular to the Variscan strike direction and traverses the southern part of the Rhenohercynian unit with the Northern Phyllite Zone and the northern part of the Saxothuringian unit including the Mid-German Crystalline High. Starting in the Kellerwald the profile crosses the Hessian Depression, the Tertiary volcanic Rhoen Mountains and the Mesozoic of the Franconian Basin (DEKORP Research Group (C) et al., 1994). East of Staffelstein the profile turns to the east and ends on the Franconian Line, the southwestern boundary fault zone of the Bohemian Massif. The line 3B/MVE (West) is intersected by ten cross lines along the profile and by DEKORP 3A at its northwestern end. To the east the profile is extended by DEKORP 3B/MVE (East).
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-21
    Description: The profile 1C was recorded in 1988 as part of the joint reflection venture DEKORP 1 of DEKORP (German Deep Seismic Reflection Program) and BELCORP (Belgian Continental Reflection Seismic Program) groups. The seismic survey of the ca. 75-km long line 1C was conducted to investigate the deep crustal structure of the western Rhenish Massif with high-fold near-vertical incidence vibroseis acquisition. The objectives of the experiment were to analyse deep Variscan and post-Variscan crustal structures in the region and to compare them with the results from the eastern Rhenish Massif gathered from the survey DEKORP 2N. The first results were presented by DEKORP Research Group (1991) and supplemented by many other researches. The Technical Report of line 1C gives detailed information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Rhenohercynian Zone is a foreland fold-and-thrust belt cropping out in the Rhenish Massif which extends from the Ardennes to the Harz Mountains. This geological unit consists predominantly of Devonian and Lower Carboniferous rocks affected by very low-grade metamorphism (DEKORP Research Group, 1991). The survey 1C was carried out in the western part of the Rhenish Massif and intersects the Variscan main structures almost perpendicular. It stretches from the Mosel Syncline to the Saar-Nahe Basin (WNW-ESE) crossing the Devonian metamorphic rocks of the Hunsrueck Mountains, the Northern Phyllite Zone and the Hunsrueck Boundary Fault separating the Rhenohercynian and Saxothuringian Zones. In the northwest 1C joins line 1B which runs through the Hocheifel area. In the southeast the line continues with 9N running across the northern part of the Upper Rhine Graben.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-09-21
    Description: The 50 km long profile 1B was recorded in 1987 as part of the joint reflection venture DEKORP 1 of DEKORP (German Deep Seismic Reflection Program) and BELCORP (Belgian Continental Reflection Seismic Program) groups. It was surveyed to investigate the deep crustal structure of the western Rhenish Massif with high-fold near-vertical incidence vibroseis acquisition. The objectives of the experiment were to analyse deep Variscan and post-Variscan crustal structures in the region and to compare them with the results from the eastern Rhenish Massif gathered from the survey DEKORP 2N. The first results were presented by DEKORP Research Group (1990, 1991) and supplemented by many other researches. The Technical Report of line 1B gives detailed information about acquisition and processing parameters. The European Variscides, extending from the French Central Massif to the East European Platform, originated during the collision between Gondwana and Baltica in the Late Palaeozoic. Due to involvement of various crustal blocks in the orogenesis, the mountain belt is subdivided into distinct zones. The external fold-and-thrust belts of the Rhenohercynian and Saxothuringian as well as the predominantly crystalline body of the Moldanubian dominate the central European segment of the Variscides. Polyphase tectonic deformation, magmatism and metamorphic processes led to a complex interlinking between the units. The Rhenohercynian Zone is a foreland fold-and-thrust belt cropping out in the Rhenish Massif which extends from the Ardennes to the Harz Mountains. This geological unit consists predominantly of Devonian and Lower Carboniferous rocks affected by very low-grade metamorphism (DEKORP Research Group, 1991). The survey 1B was carried out in the western part of the Rhenish Massif and trends nearly N-S starting in the western volcanic zone of the Eifel, the Tertiary Hoch Eifel Volcanic Field represented by alkali basalts and fractionated volcanics. The line also runs over a positiv magnetic anomaly, the Kelberg Magnetic High which is located on the southern flank of the East Eifel Main Anticline. Afterwards, 1B crosses the SE-dipping Siegen Main Thrust and ends in the Mosel Syncline, the northern border of the Hunsrueck Mountains (DEKORP Research Group, 1991). The profile joins line 1A in the north and continues to the southeast with line 1C.
    Language: English
    Type: info:eu-repo/semantics/workingPaper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...