ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-09-02
    Description: Abstract
    Description: The experimental gravity field model XGM2016 is an outcome of TUM's assessment of a 15'x15' data grid excerpt provided from NGA's updated and revised gravity data base. The assessment shall support NGA's efforts on the way on the way to the Earth Gravity Model EGM2020.
    Description: Other
    Description: XGM2016 is a combination model based on the satellite-only gravity field model GOCO05s and a global 15'x15' data grid provided from NGA's data base.
    Keywords: ICGEM ; global gravitational model ; GOCO ; Geodesy ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 15478728 Bytes
    Format: 4 Files
    Format: application/x-zip-compressed
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-02
    Description: Abstract
    Description: XGM2019e is a combined global gravity field model represented through spheroidal harmonics up to d/o 5399, corresponding to a spatial resolution of 2’ (~4 km). As data sources it includes the satellite model GOCO06s in the longer wavelength area combined with terrestrial measurements for the shorter wavelengths. The terrestrial data itself consists over land and ocean of gravity anomalies provided by courtesy of NGA (identical to XGM2016, having a resolution of 15’) augmented with topographically derived gravity over land (EARTH2014). Over the oceans, gravity anomalies derived from satellite altimetry are used (DTU13, in consistency with the NGA dataset).The combination of the satellite data with the terrestrial observations is performed by using full normal equations up to d/o 719 (15’). Beyond d/o 719, a block-diagonal least-squares solution is calculated for the high-resolution terrestrial data (from topography and altimetry). All calculations are performed in the spheroidal harmonic domain.In the spectral band up to d/o 719 the new model shows over land a slightly improved behavior over preceding models such as XGM2016, EIGEN6c4 or EGM2008 when comparing it to independent GPS leveling data. Over land and in the spectral range above d/o 719 the accuracy of XGM2019e suffers from the sole use of topographic forward modelling; Hence, errors are increased in well-surveyed areas compared to models containing real gravity data, e.g. EIGEN6c4 or EGM2008. However, the performance of XGM2019e can be considered as globally more homogeneous and independent from existing high resolution global models. Over the oceans the model exhibits an improved performance throughout the complete spectrum (equal or better than preceding models).
    Keywords: geodesy ; global gravity field model ; ICGEM ; GOCO ; GOCE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset , Dataset
    Format: 6 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-09-02
    Description: Abstract
    Description: TIM_R6e is an extended version of the satellity-only global gravity field model TIM_R6 (Brockmann et al., 2019) which includes additional terrestrial gravity field observations over GOCE's polar gap areas. The included terrestrial information consists of the PolarGap campaign data (Forsberg et al., 2017) augumented by the AntGG gravity data compilation (Scheinert et al., 2016) over the southern polar gap (〉83°S) and the ArcGP data (Forsberg et al. 2007) over the northern polar gap (〉83°N). The combination is performed on normal equation level, encompassing the terrestrial data as spectrally limited geographic 0.5°x0.5° grids over the polar gaps.
    Description: TechnicalInfo
    Description: Processing procedures: (extending TIM_R6)Gravity from orbits (SST): (identical to TIM_R6)- short-arc integral method applied to kinematic orbits, up to degree/order 150- orbit variance information included as part of the stochastic model, it is refined by empirical covariance functionsGravity from gradients (SGG): (identical to TIM_R6)- parameterization up to degree/order 300- observations used: Vxx, Vyy, Vzz and Vxz in the Gradiometer Reference Frame (GRF)- realistic stochastic modelling by applying digital decorrelation filters to the observation equations; estimated separately for individual data segments applying a robust procedureGravity from terrestrial observations (TER):- collocation of the original terrestrial data sources onto 30'x30' geographic gravity disturbance grids (in the polar gap areas above 83° southern/northern latitude, thus forming a pair of polar caps)- spectral limitation of the data to D/O 300 within the collocation process- the chosen grid is fully compatible with the grid of the zero observation constraints of the original TIM_R6 model. In its function it replaces the original constraints- from the collocated polar caps, a partial normal equation system, up to D/O 300 is derivedCombined solution:- addition of normal equations (SST D/O 150, SGG D/O 300, TER D/O 300)- Constraints: * Kaula-regularization applied to coefficients of degrees/orders 201 - 300 (constrained towards zero, fully compatible with TIM_R6)- weighting of SST and SGG is identical to TIM_R6. All TER observations are weighted with 5 mGal.Specific features of resulting gravity field:- Gravity field solution is (mostly) independent of any other gravity field information (outside the polar gap region)- Constraint towards zero starting from degree/order 201 to improve signal-to-noise ratio- Related variance-covariance information represents very well the true errors of the coefficients (outside the polar gap region)- Solution can be used for independent comparison and combination on normal equation level with other satellite-only models (e.g. GRACE), terrestrial gravity data, and altimetry (outside the polar gap region)- Since in the low degrees the solution is based solely on GOCE orbits, it is not competitive with a GRACE model in this spectral region (outside the polar gap region)- In comparison to TIM_R6, TIM_R6e should deliver more accurate results, especially towards the polar gaps. However, as it uses additional data sources it cannot be seen as totally independent anymore: even outside the polar gap regions correlations (introduced by the holistic nature of spherical harmonics) may be found.
    Keywords: global gravitational model ; ICGEM ; GOCE ; PolarGap ; geodesy ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Language: English
    Type: Dataset , Dataset
    Format: 3 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-09-02
    Description: Abstract
    Description: GOCO06s is a satellite-only, global gravity field model up to degree and order 300, with secular and annual variations up to degree and order 120. It was produced by the GOCO Team (Technical University of Munich, University of Bonn, Graz University of Technology, Austrian Academy of Sciences, University of Bern) and is based on 1,160,000,000 observations from 19 satellites. The contributing satellite mission are: GOCE (TIM6 gradiometer observations), GRACE (ITSG-Grace2018s), kinematic orbits from Swarm A+B+C, TerraSAR-X, TanDEM-X, CHAMP, GRACE and GOCE, and SLR observations to LAGEOS, LAGEOS 2, Starlette, Stella, AJISAI, LARES, LARETS, Etalon 1/2 and BLITS. The combination of the individual data sources is performed on the basis of the full systems of normal equations, where the relative weighting between each constituent is determined by variance component estimation. In order to account for the polar gap of GOCE, the solution is Kaula-regularized after degree and order 150.The model is available via the ICGEM Service (Ince et al., 2019)
    Description: TechnicalInfo
    Description: PARAMETERS:modelname GOCO06sproduct_type gravity_fieldearth_gravity_constant 3.9860044150e+14radius 6.3781363000e+06max_degree 300norm fully_normalizedtide_system zero_tideerrors formal
    Keywords: ICGEM ; global gravitational model ; GOCO ; GOCE ; GRACE ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS
    Type: Dataset
    Format: 4 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9276) between ellipsoidal heights w.r.t. the GRS80 ellipsoid (EPSG:4937) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in ETRS89 (EPSG:4258), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-30
    Description: Abstract
    Description: The Austrian Geoid 2008 is the official geoid model for Austria provided by the Austrian Federal Office for Metrology and Surveying (BEV). This model describes the transformation surface (EPSG:9277) between ellipsoidal heights w.r.t. the Bessel ellipsoid (datum MGI, EPSG:9267) and orthometric heights (EVRF2000 Austrian, EPSG:9274). The grid is defined in MGI (EPSG:4312), covering the area within 46.3° 〈 latitude 〈 49.1° and 9.5° 〈 longitude 〈 17.3°, with a spacing of 1.5' in latitude and 2.5' in longitude. The model is based on 14001 gravity anomaly values, 672 deflections of the vertical and 170 GPS/levelling observations. The computation was performed in the framework of a remove-restore procedure, modelling the long wavelengths of the gravity field by the EIGEN-GL04S global model, and the short wavelengths by the Airy-Heiskanen model with a standard density of 2670 kg/m3. A digital terrain model with a resolution of 44 x 49 m was assembled as a combination of regional Austrian and Swiss models, as well as SRTM for the neighboring countries. The Least Squares Collocation (LSC) technique was used for the geoid computation, interpolating the empirical covariance of the residual quantities by the Tscherning-Rapp analytic covariance model. Special care was devoted to the optimal relative weighting of the input data, namely to the noise covariance models, especially concerning the GPS/levelling observations. The resulting hybrid geoid model was assessed by comparing it with independent GPS/levelling information, leading to an estimated accuracy of the order of 2-3 cm over the whole Austrian territory. The model is also available at the BEV open data portal, and more information about it can be found on the BEV website. The geoid model is provided in ISG format 2.0 (ISG Format Specifications), while the file in its original data format is available at the model ISG webpage.
    Description: Other
    Description: The International Service for the Geoid (ISG) was founded in 1992 (as International Geoid Service - IGeS) and it is now an official service of the International Association of Geodesy (IAG), under the umbrella of the International Gravity Field Service (IGFS). The main activities of ISG consist in collecting, analysing and redistributing local and regional geoid models, as well as organizing international schools on the geoid determination (Reguzzoni et al., 2021).
    Keywords: Geodesy ; Geoid model ; ISG ; Least Squares Collocation ; Austria ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 GEOID CHARACTERISTICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-01
    Description: Abstract
    Description: This data publication represents the main outcomes of WP4.100 of Individual Project IP4 and of the Deliverable D4.1 of the research unit NEROGRAV summarizing the analyses of the GRACE and GRACE-FO accelerometer (ACC) and satellite-to-satellite tracking data (Microwave instrument (MWI) or Laser Ranging Interferometer (LRI)) in order to derive a characterization of the instrument performance and a stochastic model. A detailed description and discussion focusing on the GRACE data is given in Murböck et al. (submitted to Remote Sensing). This first version of the combined ACC+MWI/LRI noise models is provided with the ASCII-file NEROGRAV_Dataset_GRACE_GRACE-FO_ACC-MWI-LRI_StochasticModel_V01.dat containing header information (17 lines) and the square root power spectral densities (PSDs), i.e. the amplitude spectral densities (ASDs) for the combined accelerometer and ranging observations in terms of range-rates (cf. Fig. 1). It is given for 21600 frequencies from 1/86400 Hz up to 0.25 Hz. Above 0.1 Hz (Nyquist frequency of the 5 s sampled MWI data) the columns for the ACC+MWI models are zero. The five columns consist of the frequency in Hz (col. 1), the combined ACC+MWI models for GRACE 2007 (col. 2), GRACE 2014 (col. 3), GRACE-FO 2019 (col. 4) and the combined GRACE-FO 2019 ACC+LRI model (col. 5) in m/s/√Hz.
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-04
    Description: Abstract
    Description: GOCO05c is a static global combined gravity field model up to d/o 720. It has been elaborated by the GOCO Group (TU Munich, Bonn University, TU Graz, Austrian Academy of Sciences, University Bern). GOCO05c is a combination model based on the satellite-only gravity field model GOCO05s and several gravity anomaly datasets, constituting a global 15'x15' data grid. The combination is carried out in term of full normal equation systems.Contributing Institutions are: (1) TU Muenchen, DE, Institute of Astronomical and Physical Geodesy; (2) University of Bonn, DE, Institute of Geodesy and Geoinformation; (3) TU Graz, AU, Institute of Theoretical and Satellite Geodesy; (4) Austrian Academy of Sciences, Space Research Institute, and (5) University of Bern, CH, Astronomical Institute
    Description: Other
    Description: Global 15’x15’ data grid: Region (Source): Number of data cellsArctic (ArcGP Group): 44522Australia (Curtin University):11170Canada (NRCan):19259Europe (IfE Hanover):15625Oceans (DTU Space): 691818South America (NGA): 24818USA (NGA): 12895For the remaining land areas (Central America, Asia, Africa, Antarctica) fill-in datasets were used: Data (Source): Number of data cells NIMA96 (DMA/GSFC): 110594GOCO05s (GOCO Group): 106099 (band-limited gravity anomalies)RWI_TOIS2012 (KIT): 117737 (topographic anomalies)GOCO05c should not be used for geophysical applications in fill-in regions, because its high frequency part in fill-in regions resulted from simple synthetic numeric forward modelling of topographic information.
    Keywords: ICGEM ; global gravitational model ; GOCO ; Geodesy ; GOCE
    Language: English
    Type: Dataset , Dataset
    Format: 14167050 Bytes
    Format: 4 Files
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/octet-stream
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-12-01
    Description: Abstract
    Description: The joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) mission has the objective to extend time series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth's gravity field carries information on mass-change induced by water cycle, climate change, and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. The MAGIC mission will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR--led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA--led pair (P2) is expected to be in an inclined orbit of 65--70 degrees at approximately 400 km altitude. The ESA--led pair P2 Next Generation Gravity Mission (NGGM) shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. sub--weekly) resolution, shorter latency, and higher accuracy than GRACE and GRACE-FO. This will pave the way to new science applications and operational services. The performances of different MAGIC mission scenarios for different application areas in the field of geosciences were analysed in the frame of the initial ESA Science Support activities for MAGIC. The data sets provided here are the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal that were used for these analyses. The .gfc files in the folders monthly (31-day solutions) and weekly (7-day solutions) contain the estimated (HIS) coefficients (Cnm, Snm) as well as the formal errors (SigCnm, SigSnm) of the different MAGIC scenarios. In order to compute the coefficient errors, the reference/true HIS coefficients contained in the folder HIS_reference_fields need to be subtracted from the estimated HIS coefficients. The data sets provided here comprise the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal (based on Dobslaw et al. 2014; 2015) that were used for the above analyses.
    Keywords: Satellite gravity ; Time variable gravity ; Hydrology ; Global change from geodesy ; Earthquake dynamics ; Glaciology ; ICGEM ; geodesy ; temporal gravity field model ; simulated gravity field ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...