ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GFZ Data Services  (4)
Collection
Keywords
Years
  • 1
    Publication Date: 2021-08-13
    Description: Abstract
    Description: We provide geochemical data for three sites that define a gradient of erosion rates – an “erodosequence”. These sites are the Swiss Central Alps, a rapidly-eroding post-glacial mountain belt; the Southern Sierra Nevada, USA, eroding at moderate rates; and the slowly-eroding tropical Highlands of central Sri Lanka. Specifically, we provide silicon isotope ratios and germanium/silicon ratios and the major element composition of 1) rock, 2) saprolite, 3) soil, 4) plants, 5) river dissolved loads, 6) the soil and saprolite amorphous silica fraction (accessed with a NaOH leach), and 7) the soil and saprolite clay-size fraction (isolated with a differential settling protocol). These data serve two purposes. First, they allow us to improve understanding of the controls on silicon isotopes and germanium/silicon ratios in the 'Critical Zone'. Specifically, we can quantify the fractionation factors (for silicon isotopes) and the exchange coefficients (for germanium/silicon ratios), for secondary mineral precipitation and for biological uptake. Secondly, we can use mass-balance approaches to quantify the partitioning of silicon - a nutrient, and a major rock-forming element - among secondary minerals, plant material, and solutes. All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description.
    Description: TableOfContents
    Description: This dataset consists of five tables: S1. Analyses of soil, saprolite, and rock from the Swiss Alps study site S2. Analyses of soil, saprolite, and rock from the Sierra Nevada study site S3. Analyses of soil, saprolite, and rock from the Sri Lanka study site S4. Analyses of stream water from the Swiss Alps, Sierra Nevada, and Sri Lanka study sites S5. Analyses of plant material from the Swiss Alps, Sierra Nevada, and Sri Lanka study sites
    Keywords: silicon isotopes ; germanium ; EARTH SCIENCE 〉 BIOSPHERE 〉 TERRESTRIAL ECOSYSTEMS 〉 FORESTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 NUTRIENTS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 DECOMPOSITION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 MINERAL DISSOLUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-09-15
    Description: Abstract
    Description: We provide geochemical background data on the partitioning and cycling of elements between rock, saprolite, soil, plants, and river dissolved and solid loads from at three sites along a global transect of mountain landscapes that differ in erosion rates – an “erodosequence”. These sites are the Swiss Central Alps, a rapidly-eroding post-glacial mountain belt; the Southern Sierra Nevada, USA, eroding at moderate rates; and the slowly-eroding tropical Highlands of Sri Lanka. The backbone of this analysis is an extensive data set of rock, saprolite, soil, water, and plant geochemical data. This set of elemental concentrations is converted into process rates by using regolith production and weathering rates from cosmogenic nuclides, and estimates of biomass growth. Combined, they allow us to derive elemental fluxes through regolith and vegetation. The main findings are: 1) the rates of weathering are set locally in regolith, and not by the rate at which entire landscapes erode; 2) the degree of weathering is mainly controlled by regolith thickness. This results in supply-limited weathering in Sri Lanka where weathering runs to completion, and kinetically-limited weathering in the Alps and Sierra Nevada where soluble primary minerals persist; 3) these weathering characteristics are reflected in the sites’ ecosystem processes, namely in that nutritive elements are intensely recycled in the supply-limited setting, and directly taken up from soil and rock in the kinetically settings; 4) contrary to common paradigms, the weathering rates are not controlled by biomass growth; 5) at all sites we find a deficit in river solute export when compared to solute production in regolith, the extent of which differs between elements but not between erosion rates. Plant uptake followed by litter erosion might explain this deficit for biologically utilized elements of high solubility, and rare, high-discharge flushing events for colloidal-bound elements of low solubility. Our data and the new metrics have begun to serve for calibrating metal isotope systems in the weathering zone, the isotope ratios of which depend on the flux partitioning between the compartments of the Critical Zone. We demonstrate this application in several isotope geochemical companion papers with associated datasets from the same samples. All samples are assigned with International Geo Sample Numbers (IGSN), a globally unique and persistent Identifier for physical samples. The IGSNs are provided in the data tables and link to a comprehensive sample description in the internet.
    Description: Other
    Description: Part 1: Tables included in this data publication (All tables are included in 2021-001_vonBlanckenburg-et-al_ASS_Data_part-1.xlsx and additionally provided in tab delimited text version): Table A1. Swiss Alps analyses of soil, saprolite, rock Table A2. Swiss Alps analyses of water samples Table A3. Swiss Alps analyses of plant samples from the Swiss Alps Table SN1. Sierra Nevada analyses of soil, saprolite, rock Table SN2. Sierra Nevada analyses of water samples Table SN3. Sierra Nevada analyses of plant samples Table SL1. Sri Lanka analyses of soil, saprolite, rock Table SL2. Sri Lanka analyses of water samples. Element concentration analyses and pH Table SL3. Sri Lanka analyses of plant samples Table C1. Summary of principle ASS site characteristics Table C2. Compilation of Denudation rates from river cosmogenic nuclides in river sediment and soil associated production rates Table C3. Compilation of soil production rates, CDF, and chemical weathering rates of ASS sites Table C4. Fractional contributions of endmembers from a inversion of dissolved elements in streams Table C5. Flux Summary: Plant uptake rates, recycling ratios, and dissolved export efficiency Table C6. Data quality control for plant concentration analyses Part 2: Supplementary Data included in this data publication (file: 2021-001_vonBlanckenburg-et-al_ASS_Data_part-2.pdf): 1. Sources of River Solutes from End Member Mixing Analysis (EMMA) 2. Reassessment of Dust Input in the Sierra Nevada 3. Rock and Regolith Mineralogical Composition from X_Ray Diffraction ((XRD)
    Keywords: river water ; vegetation ; vegetation chemical composition ; EARTH SCIENCE 〉 BIOSPHERE 〉 AQUATIC ECOSYSTEMS 〉 RIVERS/STREAM HABITAT ; EARTH SCIENCE 〉 BIOSPHERE 〉 ECOLOGICAL DYNAMICS 〉 ECOSYSTEM FUNCTIONS 〉 NUTRIENT CYCLING ; EARTH SCIENCE 〉 BIOSPHERE 〉 TERRESTRIAL ECOSYSTEMS 〉 FORESTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 NUTRIENTS ; EARTH SCIENCE 〉 BIOSPHERE 〉 VEGETATION 〉 PHOSPHORUS ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 EROSION ; EARTH SCIENCE 〉 LAND SURFACE 〉 EROSION/SEDIMENTATION 〉 WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 CHEMICAL WEATHERING ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 DECOMPOSITION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROCESSES 〉 MINERAL DISSOLUTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 CHEMICAL CONCENTRATIONS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPE RATIOS ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOCHEMISTRY 〉 GEOCHEMICAL PROPERTIES 〉 ISOTOPES ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOMORPHIC LANDFORMS/PROCESSES 〉 FLUVIAL PROCESSES 〉 WEATHERING
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-12-16
    Description: Abstract
    Description: The ratio of 18O to 16O in cherts and other chemical sediments has increased by about 15‰ over geological time, but the cause of this increase is debated. Here, we provide a 1D sediment-column model designed to investigate the role of diagenesis, and specifically the heat flow through marine sediments, in setting the chert oxygen isotope ratios. The model simulates the transformation of amorphous silica (opal-A) to crystalline quartz via an intermediate phase by using a silicon mass balance that is driven by the kinetics and thermodynamics of silica phase dissolution and (re)precipitation. The model demonstrates that heat flow through marine sediments influences the rate, and therefore depths, temperatures, and oxygen isotope compositions, at which cherts form. The implication is that because global heat flow from the solid Earth has decreased through geological time, heat flow is an important contributing factor to the long-term trend in chert oxygen isotope composition. The model is provided as a set of Matlab scripts (".m" files) and assorted input datasets provided as standard plain text files. The model is described in full in the manuscript "Chert oxygen isotope ratios are driven by Earth's thermal evolution" by Michael Tatzel, Patrick J. Frings, Marcus Oelze, Daniel Herwartz, Nils K. Lünsdorf, and Michael Wiedenbeck, and in the online Supporting Information associated with the manuscript. Once downloaded and unzipped, the files should be added to the local Matlab search path. The parameters of interest can be changed in the first few lines of 'chertKineticModel.m'. No other files need to be opened or modified. These files have been tested in Matlab R2020a running on Mac OS X 12.2.1 and in Matlab R2022b on Mac OS X 12.6.1.
    Description: Other
    Description: Licence: MIT License (https://opensource.org/licenses/MIT) Copyright © 2022 Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software.
    Keywords: Chert ; EARTH SCIENCE 〉 OCEANS 〉 MARINE SEDIMENTS 〉 DIAGENESIS ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 OCEAN/LAKE RECORDS 〉 OXYGEN ISOTOPES ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 PALEOCLIMATE RECONSTRUCTIONS 〉 SEA SURFACE TEMPERATURE RECONSTRUCTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEOTHERMAL DYNAMICS 〉 GEOTHERMAL TEMPERATURE 〉 TEMPERATURE GRADIENT
    Type: Model , Model
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-10
    Description: Abstract
    Description: This data publication is supplementary to a study on the climatic controls on leaf wax hydrogen isotopes, by Gaviria-Lugo et al. (2023). The dataset contains hydrogen isotope ratios from leaf wax n-alkanes (δ2Hwax) taken from soils, river sediments and marine surface sediments along a climatic gradient from hyperarid to humid in Chile. In addition, for each sampling site the hydrogen isotope ratios from precipitation (δ2Hpre) from the grids produced by the Online Isotopes in Precipitation Calculator (OIPC) (Bowen and Revenaugh, 2003). Furthermore, for each sampling site we report mean annual data of precipitation, actual evapotranspiration, relative humidity, and soil moisture, all derived from TerraClimate (Abatzoglou et al., 2018). Also provide data of mean annual temperature and the annual average of maximum daily temperature derived from WorldClim (Fick and Hijmans, 2017). As a final climatic parameter, we also derived data of aridity index from the Consultative Group of the International Agricultural Research Consortium for Spatial Information (CGIARCSI) (Trabucco and Zomer, 2022). In addition to climatic variables, for each site we include land cover fractions of trees, shrubs, grasses, crops, and barren land. These land cover fractions were obtained from Collection 2 of the Copernicus Global Land Cover layers (Buchhorn et al., 2020) via Google Earth Engine. For further comparison here we provide δ2Hwax compiled from 26 publications (see references) that reported both the n-C29 and n-C31 n-alkanes homologues from soils and lake sediments. For each sampling site of the global compilation, we provide δ2Hpre and the same climatic and land cover parameters as for the Chilean data (i.e., precipitation, actual evapotranspiration, relative humidity, soil moisture, aridity index, temperature, fraction of trees, fraction of grasses, etc.), using the same sources. The data is provided here as one single .xlsx file containing 9 data sheets, but also as 9 individual .csv files, to be accessed using the file format of preference. Additionally, 5 supplementary figures that accompany the publication Gaviria-Lugo et al. (2023) are provided in one single .pdf file. The samples taken for this study were assigned International Geo Sample Numbers (IGSNs), which are included in the provided tables S4, S5 and S6.
    Keywords: Leaf-wax ; n-alkanes ; compound specific isotopes ; aridity ; evapotranspiration ; apparent fractionation ; hyperaridity ; Chile ; non-linear ; river sediment ; soils ; marine surface sediments ; chemical 〉 biochemical substance 〉 lipid ; chemical 〉 organic substance 〉 hydrocarbon 〉 alkane ; climate 〉 climate type 〉 desert climate ; EARTH SCIENCE 〉 ATMOSPHERE 〉 ATMOSPHERIC WATER VAPOR 〉 EVAPOTRANSPIRATION ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 BIOLOGICAL RECORDS 〉 BIOMARKER ; EARTH SCIENCE 〉 CLIMATE INDICATORS 〉 PALEOCLIMATE INDICATORS 〉 PALEOCLIMATE RECONSTRUCTIONS 〉 DROUGHT/PRECIPITATION RECONSTRUCTION ; EARTH SCIENCE 〉 LAND SURFACE 〉 LAND USE/LAND COVER 〉 LAND COVER ; EARTH SCIENCE 〉 LAND SURFACE 〉 SOILS 〉 SOIL MOISTURE/WATER CONTENT ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 ISOTOPES ; EARTH SCIENCE 〉 PALEOCLIMATE 〉 LAND RECORDS 〉 SEDIMENTS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...