ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-29
    Description: Abstract
    Description: A temporary seismic array of short-period seismometers was installed in the 8-story AHEPA hospital, located in the city of Thessaloniki, N. Greece. The scope of the survey was to assess the dynamic characteristics of the RC-building by processing ambient vibration recordings of more than 40 seismic stations installed at different positions in the building. Part of the instruments was used in a soil experiment, outside of the hospital, to study possible Soil Structure Interaction phenomena. In addition to above experiments, a site-specific survey was performed in the Volvi basin, 30km ENE of the city of Thessaloniki. The scope of this experiment was to investigate the soil properties and the geometry of the subsurface geology.
    Keywords: Seismometers ; ambient noise ; building monitoring ; soil properties ; PASSIVE_SEISMIC 〉 STATIONS ; PASSIVE_SEISMIC 〉 STATIONS ; SENSOR 〉 GEOPHONE ; SENSOR 〉 3-C ; LAND ; MINISEED_DATA_FORMAT ; SEISMIC_WAVEFORM_DATA ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-12-16
    Description: Abstract
    Description: This data publication provides a collection of ground-motion simulation output for potential future earthquakes in the Rhine Graben area, Germany. Such data can be used as input for other engineering calculations, such as dynamic response history analysis. The earthquake sources used for the simulation consist of a stochastic catalog. They were generated using the German national seismic hazard model, the event-set calculator in the OpenQuake engine (Pagani et al., 2014), and considering both areal seismic source and known tectonic faults in the area as seismic sources in the analyses (branch C in Grünthal et al.,2018). The generated events represent a possible realization of the seismicity in the area within 10,000 years with peak ground accelerations greater than 0.02g. To build the simulation database, ground-motion simulations are performed using these potential future earthquakes from stochastic catalog and adopting the simulation method of Graves and Pitarka (2010, 2015) implemented in the Southern California Earthquake Center (SCEC) broadband platform (BBP), which is tailored for use in the Rhine Graben, as discussed in Razafindrakoto et al. (2021). Here, the approach used to simulate the ground-motion is only briefly discussed; a more accurate description is given in Razafindrakoto et al. (2021), discussing the calibration and validation of ground-motion in the Rhine Graben area. Accordingly, the provided data consists of a simulation output of 284 scenario earthquakes at 76 virtual stations in the Rhine Graben area. The files provided here include the earthquake source, station information, and the simulation results in terms of time histories for individual simulation in one zip file, and a flatfile that combines various intensity measures for all sources and stations.
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-04-26
    Description: Abstract
    Description: The Community Stress Drop Validation Study has been organized as a technical activity group (TAG) of SCEC (Southern California Earthquake Center) with the aim of investigating the source parameters of the 2019 Ridgecrest seismic sequence in California. Information about the stress drop TAG are available trough the benchmark web-page (https://www.scec.org/research/stress-drop-validation). Several groups applied different techniques to a shared data set with the objective of extracting source parameters (e.g. seismic moment and corner frequency) and in turn to estimate the stress drop. We applied a spectral decomposition approach known as generalized inversion technique (GIT) and the overall analyses are presented in a series of two articles (Bindi et al 2023a; Bindi et al 2023b). Results in the form of files, figures, and tables are disseminated through this archive.
    Keywords: 2019 Ridgecrest sequence ; source parameters ; spectral decomposition ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-07
    Description: Abstract
    Description: Version History11 Sep 2019: Release of Version 1.1 with the following changes: (1) new licence: CC BY SA 4.0, modification of the title: removal of file name and version); (2) addition of ORIDs when available; (3) actualisation of affiliations for some authors The metadata of the first version 1.0 is available in the download folder.. Data and file names remain unchanged.Area Source model for Central AsiaThe area sources for Central Asia within the EMCA model are defined by mainly considering the pattern of crustal seismicity down to 50 km depth. Although tectonic and geological information, such as the position and strike distribution of known faults, have also been taken into account when available. Large area sources (see, for example source_id 1, 2, 5, 45 and 52, source ids are identified by parameter “source_id” in the related shapefile) are defined where the seismicity is scarce and there are no tectonic or geological features that would justify a further subdivision. Smaller area sources (e.g., source_id values 36 and 53) have been designed where the seismicity can be assigned to known fault zones.In order to obtain a robust estimation of the necessary parameters for PSHA derived by the statistical analysis of the seismicity, due to the scarcity of data in some of the areas covered by the model, super zones are introduced. These super zones are defined by combining area sources based on similarities in their tectonic regime, and taking into account local expert’s judgments. The super zones are used to estimate: (1) the completeness time of the earthquake catalogue, (2) the depth distribution of seismicity, (3) the tectonic regime through focal mechanisms analysis, (4) the maximum magnitude and (5) the b values via the GR relationship.The earthquake catalogue for focal mechanism is extracted from the Harvard Global Centroid Moment Tensor Catalog (Ekström and Nettles, 2013). For the focal mechanism classification, the Boore et al. (1997) convention is used. This means that an event is considered to be strike-slip if the absolute value of the rake angle is 〈=30 or 〉=150 degrees, normal if the rake angle is 〈-30 or 〉-150 and reverse (thrust) if the rake angle is 〉30 or 〈150 degrees. The distribution of source mechanisms and their weights are estimated for the super zones.For area sources, the maximum magnitude is usually taken from the historical seismicity, but due to some uncertainties in the magnitudes of the largest events, the opinions of the local experts are also included in assigning the maximum magnitude to each super zone. Super zones 2 and 3, which belongs to stable regions, are each assigned a maximum magnitude of 6, after Mooney et al. (2012), which concludes after analyses and observation of modern datasets that at least an event of magnitude 6 can occur anywhere in the world. For hazard calculations, each area source is assigned the maximum magnitude of their respective super zone.For processing the GR parameters (a and b values) for the area sources, the completeness analysis results estimated for the super zones are assigned to the respective smaller area sources. If the individual area source has at least 20 events, the GR parameters are then estimated for the area source. Otherwise, the b value is adopted from the respective super zone to which the smaller area source belongs, and the a value is estimated based on the Weichert (1980) method. This ensures the stability in the b value as well as the variation of activity rate for different sources.The hypocentral depth distribution is estimated from the seismicity inside each super zone. The depth distribution is considered for maximum up to three values. Based on the number of events, the weights are assigned to each distribution. These depth distributions, along with corresponding weights, are further assigned to the area sources within the same super zones.
    Description: Other
    Description: Distribution file: "EMCA_seismozonesv1.0_shp.zip"Version: v1.0Release date: 2015-07-30Format: ESRI ShapefileGeometry type: polygonsNumber of features: 63Spatial Reference System: +proj=longlat +ellps=WGS84 +datum=WGS84 +no_defsDistribution file: "EMCA_seismozonesv1.0_nrml.zip"Version: v1.0Release date: 2015-07-30Format: NRML (XML) Format compatible with the GEM OpenQuake platform (http://www.globalquakemodel.org/openquake/about/platform/)Feature attributes:src_id : Id of the seismic sourcesrc_name : Name of the seismic sourcetect_reg: Tectonic regime of the seismic sourceupp_seismo : Upper level of the the seismogenic depth (km)low_seismo : Lower level of the seismogenic depth (km)mag_scal_r: Magnitude scaling relationshiprup_asp_ra: Rupture aspect ratiomfd_type : Magnitude frequency distribution typemin_mag: Minimum magnitude of the magnitude frequency relationshipmax_mag: Maximum magnitude of the magnitude frequency relationshipa_value: a value of the magnitude frequency relationshipb_balue : b value of the magnitude frequency relationshipnum_npd: number of nodal plane distributionweight_1 : weight of 1st nodal plane distributionstrike_1: Strike of the seismic source (degrees)rake_1: rake of the seismic source (degrees)dip_1: dip of the seismic source (degrees)num_hdd: number of hypocentral depth distributionhdd_d_1: Depth of 1st hypocentral depth distribution (km)hdd_w_1: Weight of 1st hypocentral depth distribution
    Keywords: seismogenic sources ; central asia ; EMCA ; GEM ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE SERVICES 〉 DATA MANAGEMENT/DATA HANDLING 〉 CATALOGING
    Type: Dataset
    Format: 1 Files
    Format: application/octet-stream
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-03-28
    Description: Abstract
    Description: This archive disseminated through the GFZ-Data Service includes both results and information as-sociated to Bindi et al. (2023). In particular, the archive includes a seismic catalogue reporting ener-gy magnitude Me estimated form vertical P-waves recorded at teleseismic distances in the range 20°≤ D ≤ 98°, following Di Giacomo et al (2008, 2010). The catalogue is built considering 6349 earth-quakes included in the GEOFON (Quinteros et al, 2021) catalogue with moment magnitude Mw larger than 5 and occurring after 2011. Tools used to compute the energy magnitude are free available. In particular, we used stream2segment (Zaccarelli, 2018) to download data from IRIS (https://ds.iris.edu/ds) and EIDA (Strollo et al., 2021) repositories, and me-compute [Zaccarelli, 2023) to process waveforms and compute Me. The methodology applied to me-compute is also implemented as add-on for SeicomP (GFZ and Gempa, 2020) in order to allow the real time computation of Me (https://github.com/SeisComP/scmert).
    Description: Other
    Description: Version History: 19 February 2024: release of first version 28 March 2024: release of v.1.1 Addition of the complete list of references for the seismic networks analysed with me-compute as described in Bindi et al. (2024, ESSD). The list is provided as additional txt file in the data download section and all references were added to the XML metadata.
    Keywords: Energy magnitude ; seismic catalog ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; geological process 〉 seismic activity 〉 earthquake
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Irpinia seismic Array is part of the DEnse mulTi-paramEtriC observations and 4D high resoluTion imaging (DETECT) project focused on the acquisition of a unique multiparametric dataset and fosters collaboration among various institutions. The University of Naples Federico II (UniNa) and the German Research Centre for Geosciences (GFZ) are leading this effort carried out in collaboration with various local institutions and supported by the local municipalities. The DETECT project aims at exploiting very dense seismic networks deployed across a segmented fault system (Irpinia and Pergola-Melandro) to foster the development of scientific integrated methodologies for monitoring and imaging the fault behavior during the inter-seismic phase. The Irpinia seismic Array consists of a dense constellation of seismic antennas using more than 200 seismic stations deployed for one year. Each seismic antenna, with maximum aperture of ~2 km, uses one broad-band sensor, one short period sensor with 1 Hz and 8 with 4.5 Hz natural frequency. The antennas are deployed above and near the fault segments that generated during the last centuries many strong earthquakes in the southern Apennines. Waveform data are available from the GEOFON data centre, under network code ZK.
    Keywords: Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Array ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...