ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2016-11-18
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2020-11-25
    Description: The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (〉 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
    Electronic ISSN: 2296-7745
    Topics: Biology
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Levin, L. A., Bett, B. J., Gates, A. R., Heimbach, P., Howe, B. M., Janssen, F., McCurdy, A., Ruhl, H. A., Snelgrove, P., Stocks, K., I., Bailey, D., Baumann-Pickering, S., Beaverson, C., Benfield, M. C., Booth, D. J., Carreiro-Silva, M., Colaco, A., Eble, M. C., Fowler, A. M., Gjerde, K. M., Jones, D. O. B., Katsumata, K., Kelley, D., Le Bris, N., Leonardi, A. P., Lejzerowicz, F., Macreadie, P., I., McLean, D., Meitz, F., Morato, T., Netburn, A., Pawlowski, J., Smith, C. R., Sun, S., Uchida, H., Vardaro, M. F., Venkatesan, R., & Weller, R. A. Global observing needs in the deep ocean. Frontiers in Marine Science, 6, (2019):241, doi: 10.3389/fmars.2019.00241.
    Description: The deep ocean below 200 m water depth is the least observed, but largest habitat on our planet by volume and area. Over 150 years of exploration has revealed that this dynamic system provides critical climate regulation, houses a wealth of energy, mineral, and biological resources, and represents a vast repository of biological diversity. A long history of deep-ocean exploration and observation led to the initial concept for the Deep-Ocean Observing Strategy (DOOS), under the auspices of the Global Ocean Observing System (GOOS). Here we discuss the scientific need for globally integrated deep-ocean observing, its status, and the key scientific questions and societal mandates driving observing requirements over the next decade. We consider the Essential Ocean Variables (EOVs) needed to address deep-ocean challenges within the physical, biogeochemical, and biological/ecosystem sciences according to the Framework for Ocean Observing (FOO), and map these onto scientific questions. Opportunities for new and expanded synergies among deep-ocean stakeholders are discussed, including academic-industry partnerships with the oil and gas, mining, cable and fishing industries, the ocean exploration and mapping community, and biodiversity conservation initiatives. Future deep-ocean observing will benefit from the greater integration across traditional disciplines and sectors, achieved through demonstration projects and facilitated reuse and repurposing of existing deep-sea data efforts. We highlight examples of existing and emerging deep-sea methods and technologies, noting key challenges associated with data volume, preservation, standardization, and accessibility. Emerging technologies relevant to deep-ocean sustainability and the blue economy include novel genomics approaches, imaging technologies, and ultra-deep hydrographic measurements. Capacity building will be necessary to integrate capabilities into programs and projects at a global scale. Progress can be facilitated by Open Science and Findable, Accessible, Interoperable, Reusable (FAIR) data principles and converge on agreed to data standards, practices, vocabularies, and registries. We envision expansion of the deep-ocean observing community to embrace the participation of academia, industry, NGOs, national governments, international governmental organizations, and the public at large in order to unlock critical knowledge contained in the deep ocean over coming decades, and to realize the mutual benefits of thoughtful deep-ocean observing for all elements of a sustainable ocean.
    Description: Preparation of this manuscript was supported by NNX16AJ87A (NASA) Consortium for Ocean Leadership, Sub-Award No. SA16-33. AC was supported by FCT-Investigador contract (IF/00029/2014/CP1230/CT0002). LL was supported by a NASA subaward from the Consortium for Ocean Leadership. AG and HR were supported by Horizon 2020, EU Project “EMSO Link” grant ID 731036. AG, BB, DJ, and HR contributions were supported by the UK Natural Environment Research Council Climate Linked Atlantic Section Science project (NE/R015953/1). JP was funded by the Swiss Network for International Studies, and the Swiss National Science Foundation (grant 31003A_179125). TM was supported by Program Investigador FCT (IF/01194/2013), IFCT Exploratory Project (IF/01194/2013/CP1199/CT0002), H2020 Atlas project (GA 678760), and the H2020 MERCES project (GA 689518). This is PMEL contribution number 4965.
    Keywords: Deep sea ; Ocean observation ; Blue economy ; Essential ocean variables ; Biodiversity ; Ocean sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Howell, K. L., Hilario, A., Allcock, A. L., Bailey, D. M., Baker, M., Clark, M. R., Colaco, A., Copley, J., Cordes, E. E., Danovaro, R., Dissanayake, A., Escobar, E., Esquete, P., Gallagher, A. J., Gates, A. R., Gaudron, S. M., German, C. R., Gjerde, K. M., Higgs, N. D., Le Bris, N., Levin, L. A., Manea, E., McClain, C., Menot, L., Mestre, N. C., Metaxas, A., Milligan, R. J., Muthumbi, A. W. N., Narayanaswamy, B. E., Ramalho, S. P., Ramirez-Llodra, E., Robson, L. M., Rogers, A. D., Sellanes, J., Sigwart, J. D., Sink, K., Snelgrove, P. V. R., Stefanoudis, P., V., Sumida, P. Y., Taylor, M. L., Thurber, A. R., Vieira, R. P., Watanabe, H. K., Woodall, L. C., & Xavier, J. R. A blueprint for an inclusive, global deep-sea ocean decade field program. Frontiers in Marine Science, 7, (2020): 584861, doi:10.3389/fmars.2020.584861.
    Description: The ocean plays a crucial role in the functioning of the Earth System and in the provision of vital goods and services. The United Nations (UN) declared 2021–2030 as the UN Decade of Ocean Science for Sustainable Development. The Roadmap for the Ocean Decade aims to achieve six critical societal outcomes (SOs) by 2030, through the pursuit of four objectives (Os). It specifically recognizes the scarcity of biological data for deep-sea biomes, and challenges the global scientific community to conduct research to advance understanding of deep-sea ecosystems to inform sustainable management. In this paper, we map four key scientific questions identified by the academic community to the Ocean Decade SOs: (i) What is the diversity of life in the deep ocean? (ii) How are populations and habitats connected? (iii) What is the role of living organisms in ecosystem function and service provision? and (iv) How do species, communities, and ecosystems respond to disturbance? We then consider the design of a global-scale program to address these questions by reviewing key drivers of ecological pattern and process. We recommend using the following criteria to stratify a global survey design: biogeographic region, depth, horizontal distance, substrate type, high and low climate hazard, fished/unfished, near/far from sources of pollution, licensed/protected from industry activities. We consider both spatial and temporal surveys, and emphasize new biological data collection that prioritizes southern and polar latitudes, deeper (〉 2000 m) depths, and midwater environments. We provide guidance on observational, experimental, and monitoring needs for different benthic and pelagic ecosystems. We then review recent efforts to standardize biological data and specimen collection and archiving, making “sampling design to knowledge application” recommendations in the context of a new global program. We also review and comment on needs, and recommend actions, to develop capacity in deep-sea research; and the role of inclusivity - from accessing indigenous and local knowledge to the sharing of technologies - as part of such a global program. We discuss the concept of a new global deep-sea biological research program ‘Challenger 150,’ highlighting what it could deliver for the Ocean Decade and UN Sustainable Development Goal 14.
    Description: Development of this paper was supported by funding from the Scientific Committee on Oceanic Research (SCOR) awarded to KH and AH as working group 159 co-chairs. KH, BN, and KS are supported by the UKRI funded One Ocean Hub NE/S008950/1. AH work is supported by the CESAM (UIDP/50017/2020 + 1432 UIDB/50017/2020) that is funded by Fundação para a Ciência e a Tecnologia (FCT)/MCTES through national funds. AA is supported by Science Foundation Ireland and the Marine Institute under the Investigators Program Grant Number SFI/15/IA/3100 co-funded under the European Regional Development Fund 2014–2020. AC is supported through the FunAzores -ACORES 01-0145-FEDER-000123 grant and by FCT through strategic project UID/05634/2020 and FCT and Direção-Geral de Politica do Mar (DGPM) through the project Mining2/2017/005. PE is funded by national funds (OE), through FCT in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19. SG research is supported by CNRS funds. CG is supported by an Independent Study Award and the Investment in Science Fund at WHOI. KG gratefully acknowledges support from Synchronicity Earth. LL is funded by the NOAA Office of Ocean Exploration and Research (NA19OAR0110305) and the US National Science Foundation (OCE 1634172). NM is supported by FCT and DGPM, through the project Mining2/2017/001 and the FCT grants CEECIND/00526/2017, UIDB/00350/2020 + UIDP/00350/2020. SR is funded by the FCTgrant CEECIND/00758/2017. JS is supported by ANID FONDECYT #1181153 and ANID Millennium Science Initiative Program #NC120030. JX research is funded by the European Union’s Horizon 2020 research and innovation program through the SponGES project (grant agreement no. 679849) and further supported by national funds through FCT within the scope of UIDB/04423/2020 and UIDP/04423/2020. The Natural Sciences and Engineering Council of Canada supports AM and PVRS. MB and the Deep-Ocean Stewardship Initiative are supported by Arcadia - A charitable fund of Lisbet Rausing and Peter Baldwin. BN work is supported by the NERC funded Arctic PRIZE NE/P006302/1.
    Keywords: Deep sea ; Blue economy ; Ocean Decade ; Biodivercity ; Essential ocean variables
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Rogers, A. D., Baco, A., Escobar-Briones, E., Gjerde, K., Gobin, J., Jaspars, M., Levin, L., Linse, K., Rabone, M., Ramirez-Llodra, E., Sellanes, J., Shank, T. M., Sink, K., Snelgrove, P. V. R., Taylor, M. L., Wagner, D., & Harden-Davies, H. Marine genetic resources in areas beyond national jurisdiction: promoting marine scientific research and enabling equitable benefit sharing. Frontiers in Marine Science, 8, (2021): 667274, https://doi.org/10.3389/fmars.2021.667274.
    Description: Growing human activity in areas beyond national jurisdiction (ABNJ) is driving increasing impacts on the biodiversity of this vast area of the ocean. As a result, the United Nations General Assembly committed to convening a series of intergovernmental conferences (IGCs) to develop an international legally-binding instrument (ILBI) for the conservation and sustainable use of marine biological diversity of ABNJ [the biodiversity beyond national jurisdiction (BBNJ) agreement] under the United Nations Convention on the Law of the Sea. The BBNJ agreement includes consideration of marine genetic resources (MGR) in ABNJ, including how to share benefits and promote marine scientific research whilst building capacity of developing states in science and technology. Three IGCs have been completed to date with the fourth delayed by the Covid pandemic. This delay has allowed a series of informal dialogues to take place between state parties, which have highlighted a number of areas related to MGR and benefit sharing that require technical guidance from ocean experts. These include: guiding principles on the access and use of MGR from ABNJ; the sharing of knowledge arising from research on MGR in ABNJ; and capacity building and technology transfer for developing states. In this paper, we explain what MGR are, the methods required to collect, study and archive them, including data arising from scientific investigation. We also explore the practical requirements of access by developing countries to scientific cruises, including the sharing of data, as well as participation in research and development on shore whilst promoting rather than hindering marine scientific research. We outline existing infrastructure and shared resources that facilitate access, research, development, and benefit sharing of MGR from ABNJ; and discuss existing gaps. We examine international capacity development and technology transfer schemes that might facilitate or complement non-monetary benefit sharing activities. We end the paper by highlighting what the ILBI can achieve in terms of access, utilization, and benefit sharing of MGR and how we might future-proof the BBNJ Agreement with respect to developments in science and technology.
    Description: We would like to thank the Governments of The Kingdom of Belgium, The Principality of Monaco and Costa Rica, as well as The Prince Albert II Monaco Foundation, The Norwegian Nobel Institute, The Nobel Institute, The High Seas Alliance, The Pew Charitable Trusts, Ocean Unite and REV Ocean for supporting the High Seas Treaty Dialogues which have allowed informal discussions between States representatives on the Biodiversity Beyond National Jurisdiction agreement.
    Keywords: high seas ; marine genetic resources ; access and benefit sharing ; UNCLOS ; developing states
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...