ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (5)
  • Other Sources
  • Copernicus  (4)
  • Frontiers Media  (1)
Collection
  • Articles  (5)
  • Other Sources
Years
Topic
  • 1
    Publication Date: 2017-06-02
    Description: Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the US North Atlantic GEOTRACES transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified. The more prominent of the two was a large plume of cobalt emanating from the African coast off the eastern tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to reductive dissolution, biouptake and remineralization, and aeolian dust deposition. The occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry high cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the Mid-Atlantic Ridge. The full depth section of cobalt chemical speciation revealed near-complete complexation in surface waters, even within regions of high dust deposition. However, labile cobalt observed below the euphotic zone demonstrated that strong cobalt-binding ligands were not present in excess of the total cobalt concentration there, implying that mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. In the upper water column, correlations were observed between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling. Along the western margin off the North American coast, this correlation with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt concentrations were lower than in intermediate depth waters, demonstrating that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-12-01
    Description: Cobalt is the scarcest of metallic micronutrients and displays a complex biogeochemical cycle. This study examines the distribution, chemical speciation, and biogeochemistry of dissolved cobalt during the U.S. North Atlantic GEOTRACES Transect expeditions (GA03/3_e), which took place in the fall of 2010 and 2011. Two major subsurface sources of cobalt to the North Atlantic were identified by increased abundances of dissolved cobalt relative to surrounding waters. The more prominent of the two was a large plume of cobalt emanating from the African coast off the Eastern Tropical North Atlantic coincident with the oxygen minimum zone (OMZ) likely due to a confluence of processes including reductive dissolution, biouptake and remineralization, and aeolian dust deposition. This occurrence of this plume in an OMZ with oxygen above suboxic levels implies a high threshold for persistence of dissolved cobalt plumes. The other major subsurface source came from Upper Labrador Seawater, which may carry higher cobalt concentrations due to the interaction of this water mass with resuspended sediment at the western margin or from transport even further upstream. Minor sources of cobalt came from dust, coastal surface waters and hydrothermal systems along the mid-Atlantic ridge. The full depth section of cobalt chemical speciation revealed near complete complexation in surface waters, even with the regional high dust deposition. However, labile cobalt was found below the euphotic zone, demonstrating that strong cobalt binding ligands were not present in excess of the total cobalt concentration there and implying mesopelagic labile cobalt was sourced from the remineralization of sinking organic matter. Significant correlations were observed in the upper water column between total cobalt and phosphate, and between labile cobalt and phosphate, demonstrating a strong biological influence on cobalt cycling across much of the North Atlantic transect. Along the western margin off the North American coast, this linear relationship with phosphate was no longer observed and instead a relationship between cobalt and salinity was observed, reflecting the importance of coastal input processes on cobalt distributions. In deep waters, both total and labile cobalt were lower in concentration than at intermediate depths, providing evidence that scavenging may remove labile cobalt from the water column. Total and labile cobalt distributions were also compared to a previously published South Atlantic GEOTRACES-compliant zonal transect (CoFeMUG, GAc01) to discern regional biogeochemical differences. Together, these Atlantic sectional studies highlight the dynamic ecological stoichiometry of total and labile cobalt. As increasing anthropogenic use and subsequent release of cobalt poses the potential to overpower natural cobalt signals in the oceans, it is more important than ever to establish a baseline understanding of cobalt distributions in the ocean.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-05-18
    Description: The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) are the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to open-ocean waters, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of the optical properties and environmental responses by species other than E. huxleyi are currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters (
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-10-16
    Description: The biological production of calcium carbonate (CaCO3), a process termed calcification, is a key term in the marine carbon cycle. A major planktonic group responsible for such pelagic CaCO3 production (CP) is the coccolithophores, single-celled haptophytes that inhabit the euphotic zone of the ocean. Satellite-based estimates of areal CP are limited to surface waters and open-ocean areas, with current algorithms utilising the unique optical properties of the cosmopolitan bloom-forming species Emiliania huxleyi, whereas little understanding of deep-water ecology, optical properties or environmental responses by species other than E. huxleyi is currently available to parameterise algorithms or models. To aid future areal estimations and validate future modelling efforts we have constructed a database of 2765 CP measurements, the majority of which were measured using 12 to 24 h incorporation of radioactive carbon (14C) into acid-labile inorganic carbon (CaCO3). We present data collated from over 30 studies covering the period from 1991 to 2015, sampling the Atlantic, Pacific, Indian, Arctic and Southern oceans. Globally, CP in surface waters ( 
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Martinez-Ruiz, F., Paytan, A., Gonzalez-Munoz, M. T., Jroundi, F., Abad, M. M., Lam, P. J., Horner, T. J., & Kastner, M. Barite precipitation on suspended organic matter in the mesopelagic zone. Frontiers in Earth Science, 8, (2020): 567714, doi:10.3389/feart.2020.567714.
    Description: Mechanisms underlying barite precipitation in seawater and the precise depths of barite precipitation in the water column have been debated for decades. Here we present a detailed study of water column barite distribution in the mesopelagic zone at diverse stations in the open ocean by analyzing samples collected using multiple unit large volume in-situ filtration systems in the Pacific, Atlantic and Indian oceans. Our results demonstrate that barite is an organo-mineral particularly abundant at intermediate depths throughout the world’s ocean regardless of saturation state with respect to barite. This is confirming the notion of precipitation at depths of intense organic matter mineralization. Our observations further support the link between barite formation and microbial activity, demonstrated by the association of barite particles with organic matter aggregates and with extracellular polymeric substances. Evidence for microbial mediation is consistent with previous experimental work showing that in bacterial biofilms Ba binds to phosphate groups on cell surfaces and within extracellular polymeric substances. This organo-accumulation promotes high concentrations of Ba leading to saturated microenvironments and nucleation sites favoring precipitation. The distribution of Ba isotopes in the water column and in particulate matter is also consistent with the proposed precipitation mechanism.
    Description: This study was supported by the European Regional Development Fund (ERDF) co-financed grants CGL2017-92600-EXP and PID2019-104624RB-I00 (Agencia Estatal de Investigación, Ministerio de Ciencia e Innovación, Spain), Research Groups RNM-179 and BIO 103, and Excellence Projects P18-RT-3804 and P18-RT-4074 (Junta de Andalucía), Unidad Científica de Excelencia UCE-PP2016-05 (University of Granada) and grant OCE-1443577.
    Keywords: Pelagic barite ; Organo-mineralization ; Barite saturation state ; Extracellular polymeric substances ; Bioaccumulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...