ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-02-06
    Description: Nitrogen is a key limiting nutrient that influences marine productivity and carbon sequestration in the ocean via the biological pump. In this study, we present the first estimates of nitrogen cycling in a coupled 3D ocean-biogeochemistry-isotope model forced with realistic boundary conditions from the Last Glacial Maximum (LGM) ~21,000 years before present constrained by nitrogen isotopes. The model predicts a large decrease in nitrogen loss rates due to higher oxygen concentrations in the thermocline and sea level drop, and, as a response, reduced nitrogen fixation. Model experiments are performed to evaluate effects of hypothesized increases of atmospheric iron fluxes and oceanic phosphorus inventory relative to present-day conditions. Enhanced atmospheric iron deposition, which is required to reproduce observations, fuels export production in the Southern Ocean causing increased deep ocean nutrient storage. This reduces transport of preformed nutrients to the tropics via mode waters, thereby decreasing productivity, oxygen deficient zones, and water column N-loss there. A larger global phosphorus inventory up to 15% cannot be excluded from the currently available nitrogen isotope data. It stimulates additional nitrogen fixation that increases the global oceanic nitrogen inventory, productivity, and water column N-loss. Among our sensitivity simulations, the best agreements with nitrogen isotope data from LGM sediments indicate that water column and sedimentary N-loss were reduced by 17–62% and 35–69%, respectively, relative to preindustrial values. Our model demonstrates that multiple processes alter the nitrogen isotopic signal in most locations, which creates large uncertainties when quantitatively constraining individual nitrogen cycling processes. One key uncertainty is nitrogen fixation, which decreases by 25–65% in the model during the LGM mainly in response to reduced N-loss, due to the lack of observations in the open ocean most notably in the tropical and subtropical southern hemisphere. Nevertheless, the model estimated large increase to the global nitrate inventory of 6.5–22% suggests it may play an important role enhancing the biological carbon pump that contributes to lower atmospheric CO2 during the LGM.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: image
    Format: image
    Format: image
    Format: image
    Format: image
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers
    In:  Frontiers in Microbiology, 9 . Art.Nr. 2112.
    Publication Date: 2021-03-19
    Description: Fixed nitrogen (N) limits productivity across much of the low-latitude ocean. The magnitude of its inventory results from the balance of N input and N loss, the latter largely occurring in regionally well-defined low-oxygen waters and sediments (denitrification and anammox). The rate and distribution of N input by biotic N2 fixation, the dominant N source, is not well known. Here we compile N2 fixation estimates from experimental measurements, tracer-based geochemical and modelling approaches, and discuss their limitations and uncertainties. The lack of adequate experimental data coverage and the unsufficient understanding of the controls of marine N2 fixation result in high uncertainties, which make the assessment of the current N-balance a challenge. We suggest that a more comprehensive understanding of the environmental and ecological interaction of marine N2 fixers is required to advance the field towards robust N2 fixation rates estimates and predictions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The Paris Agreement target of limiting global surface warming to 1.5–2∘C compared to pre-industrial levels by 2100 will still heavily impact the ocean. While ambitious mitigation and adaptation are both needed, the ocean provides major opportunities for action to reduce climate change globally and its impacts on vital ecosystems and ecosystem services. A comprehensive and systematic assessment of 13 global- and local-scale, ocean-based measures was performed to help steer the development and implementation of technologies and actions toward a sustainable outcome. We show that (1) all measures have tradeoffs and multiple criteria must be used for a comprehensive assessment of their potential, (2) greatest benefit is derived by combining global and local solutions, some of which could be implemented or scaled-up immediately, (3) some measures are too uncertain to be recommended yet, (4) political consistency must be achieved through effective cross-scale governance mechanisms, (5) scientific effort must focus on effectiveness, co-benefits, disbenefits, and costs of poorly tested as well as new and emerging measures.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-08
    Description: Numerical simulations and emissions estimates of plastic in and to the ocean consistently over-predict the surface inventory, particularly in the case of microplastic (MP), i.e. fragments less than 5 mm in length. Sequestration in the sediments has been both predicted and, to a limited extent, observed. It has been hypothesized that biology may be exporting a significant fraction of surface MP by way of marine snow aggregation and zooplankton faecal pellets. We apply previously published data on MP concentrations in the surface ocean to an earth system model of intermediate complexity to produce a first estimate of the potential global sequestration of MP by marine aggregates, including faecal pellets. We find a MP seafloor export potential of between 7.3E3-4.2E5 metric tons per year, or about 0.06-8.8% of estimated total annual plastic ocean pollution rates. We find that presently, aggregates alone would have the potential to remove most existing surface ocean MP to the seafloor within less than 2 years if pollution ceases. However, the observed accumulation of MP in the surface ocean, despite this high potential rate of removal, suggests that detrital export is an ineffective pathway for permanent MP removal. We theorize a prominent role of MP biological fouling and de-fouling in the rapid recycling of aggregate-associated MP in the upper ocean. We also present an estimate of how the potential detrital MP sink might change into the future, as climate change (and projected increasing MP pollution) alters the marine habitat. The polar regions, and the Arctic in particular, are projected to experience increasing removal rates as export production increases faster than MP pollution. Northern hemisphere subtropical gyres are projected to experience slowing removal rates as stratification and warming decrease export production, and MP pollution increases. However, significant uncertainty accompanies these results.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: In this paper, we outline the need for a coordinated international effort toward the building of an open-access Global Ocean Oxygen Database and ATlas (GO2DAT) complying with the FAIR principles (Findable, Accessible, Interoperable, and Reusable). GO2DAT will combine data from the coastal and open ocean, as measured by the chemical Winkler titration method or by sensors (e.g., optodes, electrodes) from Eulerian and Lagrangian platforms (e.g., ships, moorings, profiling floats, gliders, ships of opportunities, marine mammals, cabled observatories). GO2DAT will further adopt a community-agreed, fully documented metadata format and a consistent quality control (QC) procedure and quality flagging (QF) system. GO2DAT will serve to support the development of advanced data analysis and biogeochemical models for improving our mapping, understanding and forecasting capabilities for ocean O2 changes and deoxygenation trends. It will offer the opportunity to develop quality-controlled data synthesis products with unprecedented spatial (vertical and horizontal) and temporal (sub-seasonal to multi-decadal) resolution. These products will support model assessment, improvement and evaluation as well as the development of climate and ocean health indicators. They will further support the decision-making processes associated with the emerging blue economy, the conservation of marine resources and their associated ecosystem services and the development of management tools required by a diverse community of users (e.g., environmental agencies, aquaculture, and fishing sectors). A better knowledge base of the spatial and temporal variations of marine O2 will improve our understanding of the ocean O2 budget, and allow better quantification of the Earth’s carbon and heat budgets. With the ever-increasing need to protect and sustainably manage ocean services, GO2DAT will allow scientists to fully harness the increasing volumes of O2 data already delivered by the expanding global ocean observing system and enable smooth incorporation of much higher quantities of data from autonomous platforms in the open ocean and coastal areas into comprehensive data products in the years to come. This paper aims at engaging the community (e.g., scientists, data managers, policy makers, service users) toward the development of GO2DAT within the framework of the UN Global Ocean Oxygen Decade (GOOD) program recently endorsed by IOC-UNESCO. A roadmap toward GO2DAT is proposed highlighting the efforts needed (e.g., in terms of human resources).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Limiting global warming to well below 2°C and pursuing efforts to limit it to 1.5°C, as agreed in the 2015 Paris Agreement, requires global carbon neutrality by mid-century at the latest. The corresponding carbon budget is decreasing steadily and significantly. To phase out carbon emissions in line with the specified temperature target, countries are formulating their mitigation efforts in their long-term low greenhouse gas emission development strategies (LT-LEDS). However, there are no standardized specifications for preparing these strategies, which is why the reports published to date differ widely in terms of structure and scope. To consider the multiple facets of reaching net-zero from a systemic perspective as comprehensively as possible, the authors propose the Net-Zero-2050 System: A novel, transferrable systems approach that supports the development of national endeavors toward carbon neutrality. The Net-Zero-2050 System is defined by three interconnected components: The Carbon-Emission-Based System, the surrounding Framing System and a set of system boundaries. For both systems levels, IPCC approaches were used as a basis and were then adjusted and supplemented by Net-Zero-2050. We suggest applying the Net-Zero-2050 System—beyond the project environment—in carbon emission based contexts at different levels. Especially at the national level, this would improve the comparability of the different national strategies to achieve carbon neutrality.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: The ability of marine diazotrophs to fix dinitrogen gas (N₂) is one of the most influential yet enigmatic processes in the ocean. With their activity diazotrophs support biological production by fixing about 100-200 Tg N/yr of bioavailable nitrogen (N), an essential limiting nutrient. Despite their important role, the factors that control the distribution of diazotrophs and their ability to fix N₂ are not fully elucidated. We discuss insights that can be gained from the emerging picture of a wide geographical distribution of marine diazotrophs and provide a critical assessment of environmental (bottom-up) versus trophic (top-down) controls. We present a simplified theoretical framework to understand how top-down control affects competition for resources that determine ecological niches. Selective grazing on non-fixing phytoplankton is identified as a critical process that can broaden the ability of diazotrophs to compete for resources in top-down controlled systems and explain an expanded ecological niche for diazotrophy. Our simplified analysis predicts a larger importance of top-down control in nutrient-rich systems where grazing controls the faster growing phytoplankton, allowing the slower growing diazotrophs to become established. However, these predictions require corroboration by experimental and field data, together with the identification of specific traits of organisms and associated trade-offs related to selective top-down control. Elucidation of these factors could greatly improve our predictive capability for marine N2 fixation. The susceptibility of this key biogeochemical process to future changes may not only be determined by changes in environmental conditions but also via changes in the ecological interactions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Considering the reported significant diazotrophic activities in open-ocean regions where primary production is strongly limited by phosphate, we explored the ability of diazotrophs to use other sources of phosphorus to alleviate the phosphate depletion. We tested the actual efficiency of the open-ocean, N2-fixer Crocosphaera watsonii to grow on organic phosphorus as the sole P source, and observed how the P source affects the cellular C, N, and P composition. We obtained equivalent growth efficiencies on AMP and DL-α-glycerophosphate as compared with identical cultures grown on phosphate, and survival of the population on phytic acid. Our results show that Crocosphaera cannot use all phosphomonoesters with the same efficiency, but it can grow without phosphate, provided that usable DOP and sufficient light energy are available. Also, results point out that organic phosphorus uptake is not proportional to alkaline phosphatase activity, demonstrating that the latter is not a suitable proxy to estimate DOP-based growth yields of organisms, whether in culture experiments or in the natural environment. The growth parameters obtained, as a function of the P source, will be critical to improve and calibrate mathematical models of diazotrophic growth and the distribution of nitrogen fixation in the global ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-07
    Description: Removal of carbon dioxide from the atmosphere will be required over the next decades to achieve the Paris Agreement goal of limiting global warming to well below 2°C aiming at not exceeding 1.5°C. Technological and ecosystem-based options are considered for generating negative emissions through carbon dioxide removal (CDR) and several nations have already included these in their Long-Term Low Greenhouse Gas Emission Development Strategies. However, strategies for development, implementation, and upscaling of CDR options often remain vague. Considering the scale at which CDR deployment is envisioned in emission pathways for limiting global warming to 1.5°C, significant environmental, social, and institutional implications are to be expected and need to be included in national feasibility assessments of CDR options. Following a multi-disciplinary and comprehensive approach, we created a framework that considers the environmental, technological, economic, social, institutional, and systemic implications of upscaling CDR options. We propose the framework as a tool to help guide decision-relevant feasibility assessments of CDR options, as well as identify challenges and opportunities within the national context. As such, the framework can serve as a means to inform and support decision makers and stakeholders in the iterative science-policy process of determining the role of CDR options in national strategies of achieving net-zero carbon emissions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...