ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: The Surface Ocean CO2 NETwork (SOCONET) and atmospheric Marine Boundary Layer (MBL) CO2 measurements from ships and buoys focus on the operational aspects of measurements of CO2 in both the ocean surface and atmospheric MBLs. The goal is to provide accurate pCO2 data to within 2 micro atmosphere (μatm) for surface ocean and 0.2 parts per million (ppm) for MBL measurements following rigorous best practices, calibration and intercomparison procedures. Platforms and data will be tracked in near real-time and final quality-controlled data will be provided to the community within a year. The network, involving partners worldwide, will aid in production of important products such as maps of monthly resolved surface ocean CO2 and air-sea CO2 flux measurements. These products and other derivatives using surface ocean and MBL CO2 data, such as surface ocean pH maps and MBL CO2 maps, will be of high value for policy assessments and socio-economic decisions regarding the role of the ocean in sequestering anthropogenic CO2 and how this uptake is impacting ocean health by ocean acidification. SOCONET has an open ocean emphasis but will work with regional (coastal) networks. It will liaise with intergovernmental science organizations such as Global Atmosphere Watch (GAW), and the joint committee for and ocean and marine meteorology (JCOMM). Here we describe the details of this emerging network and its proposed operations and practices
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Interpreting the vulnerability of pelagic calcifiers to ocean acidification (OA) is enhanced by an understanding of their critical thresholds and how these thresholds are modified by other climate change stressors (e.g., warming). To address this need, we undertook a three-part data synthesis for pteropods, one of the calcifying zooplankton group. We conducted the first meta-analysis and threshold analysis of literature characterizing pteropod responses to OA and warming by synthetizing dataset comprising of 2,097 datapoints. Meta-analysis revealed the extent to which responses among studies conducted on differing life stages and disparate geographies could be integrated into a common analysis. The results demonstrated reduced calcification, growth, development, and survival to OA with increased magnitude of sensitivity in the early life stages, under prolonged duration, and with the concurrent exposure of OA and warming, but not species-specific sensitivity. Second, breakpoint analyses identified OA thresholds for several endpoints: dissolution (mild and severe), calcification, egg development, shell growth, and survival. Finally, consensus by a panel of pteropod experts was used to verify thresholds and assign confidence scores for five endpoints with a sufficient signal: noise ratio to develop life-stage specific, duration-dependent thresholds. The range of aragonite saturation state from 1.5–0.9 provides a risk range from early warning to lethal impacts, thus providing a rigorous basis for vulnerability assessments to guide climate change management responses, including an evaluation of the efficacy of local pollution management. In addition, meta-analyses with OA, and warming shows increased vulnerability in two pteropod processes, i.e., shell dissolution and survival, and thus pointing toward increased threshold sensitivity under combined stressor effect.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Assessing the status of ocean acidification across ocean and coastal waters requires standardized procedures at all levels of data collection, dissemination, and analysis. Standardized procedures for assuring quality and accessibility of ocean carbonate chemistry data are largely established, but a common set of best practices for ocean acidification trend analysis is needed to enable global time series comparisons, establish accurate records of change, and communicate the current status of ocean acidification within and outside the scientific community. Here we expand upon several published trend analysis techniques and package them into a set of best practices for assessing trends of ocean acidification time series. These best practices are best suited for time series capable of characterizing seasonal variability, typically those with sub-seasonal (ideally monthly or more frequent) data collection. Given ocean carbonate chemistry time series tend to be sparse and discontinuous, additional research is necessary to further advance these best practices to better address uncharacterized variability that can result from data discontinuities. This package of best practices and the associated open-source software for computing and reporting trends is aimed at helping expand the community of practice in ocean acidification trend analysis. A broad community of practice testing these and new techniques across different data sets will result in improvements and expansion of these best practices in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-07
    Description: Effective data management plays a key role in oceanographic research as cruise-based data, collected from different laboratories and expeditions, are commonly compiled to investigate regional to global oceanographic processes. Here we describe new and updated best practice data standards for discrete chemical oceanographic observations, specifically those dealing with column header abbreviations, quality control flags, missing value indicators, and standardized calculation of certain properties. These data standards have been developed with the goals of improving the current practices of the scientific community and promoting their international usage. These guidelines are intended to standardize data files for data sharing and submission into permanent archives. They will facilitate future quality control and synthesis efforts and lead to better data interpretation. In turn, this will promote research in ocean biogeochemistry, such as studies of carbon cycling and ocean acidification, on regional to global scales. These best practice standards are not mandatory. Agencies, institutes, universities, or research vessels can continue using different data standards if it is important for them to maintain historical consistency. However, it is hoped that they will be adopted as widely as possible to facilitate consistency and to achieve the goals stated above.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 16-25.
    Description: Over a period of less than a decade, ocean acidification—the change in seawater chemistry due to rising atmospheric carbon dioxide (CO2) levels and subsequent impacts on marine life—has become one of the most critical and pressing issues facing the ocean research community and marine resource managers alike. The objective of this special issue of Oceanography is to provide an overview of the current scientific understanding of ocean acidification as well as to indicate the substantial gaps in our present knowledge. Papers in the special issue discuss the past, current, and future trends in seawater chemistry; highlight potential vulnerabilities to marine species, ecosystems, and marine resources to elevated CO2; and outline a roadmap toward future research directions. In this introductory article, we present a brief introduction on ocean acidification and some historical context for how it emerged so quickly and recently as a key research topic.
    Description: We thank the National Science Foundation (NSF), National Oceanic and Atmospheric Administration (NOAA), and National Aeronautics and Space Administration (NASA) for research support on ocean acidification. We specifically acknowledge grants supporting the OCB Project Office (NSF OCE-0622984, NSF OCE-0927287, and NASA NNX08AX01G). Richard A. Feely was supported by the NOAA Climate Program under the Office of Climate Observations (Grant No. GC04-314 and the Global Carbon Cycle Program (Grant No. GC05-288).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2009. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 22 no. 4 (2009): 36-47.
    Description: The uptake of anthropogenic CO2 by the global ocean induces fundamental changes in seawater chemistry that could have dramatic impacts on biological ecosystems in the upper ocean. Estimates based on the Intergovernmental Panel on Climate Change (IPCC) business-as-usual emission scenarios suggest that atmospheric CO2 levels could approach 800 ppm near the end of the century. Corresponding biogeochemical models for the ocean indicate that surface water pH will drop from a pre-industrial value of about 8.2 to about 7.8 in the IPCC A2 scenario by the end of this century, increasing the ocean’s acidity by about 150% relative to the beginning of the industrial era. In contemporary ocean water, elevated CO2 will also cause substantial reductions in surface water carbonate ion concentrations, in terms of either absolute changes or fractional changes relative to pre-industrial levels. For most open-ocean surface waters, aragonite undersaturation occurs when carbonate ion concentrations drop below approximately 66 μmol kg-1. The model projections indicate that aragonite undersaturation will start to occur by about 2020 in the Arctic Ocean and 2050 in the Southern Ocean. By 2050, all of the Arctic will be undersaturated with respect to aragonite, and by 2095, all of the Southern Ocean and parts of the North Pacific will be undersaturated. For calcite, undersaturation occurs when carbonate ion concentration drops below 42 μmol kg-1. By 2095, most of the Arctic and some parts of the Bering and Chukchi seas will be undersaturated with respect to calcite. However, in most of the other ocean basins, the surface waters will still be saturated with respect to calcite, but at a level greatly reduced from the present.
    Description: S. Cooley and S. Doney acknowledge support from NSF ATM-0628582. Richard A. Feely was supported by the NOAA Climate Program under the Office of Climate Observations (Grant No. GC04-314 and the Global Carbon Cycle Program (Grant No. GC05-288).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...