ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-02-07
    Description: Highlights • A mechanistic explanation is provided for the observed CO2 loss in the sediments. • Reactions of CO2 with the sediment lead to significant heating. • The observations were modeled including reactions and losses due to lateral transport. • CO2 leakage will lead to very local effects. Abstract We investigated the effect of an artificial CO2 vent (0.0015−0.037 mol s−1), simulating a leak from a reservoir for carbon capture and storage (CCS), on the sediment geochemistry. CO2 was injected 3 m deep into the seafloor at 120 m depth. With increasing mass flow an increasing number of vents were observed, distributed over an area of approximately 3 m. In situ profiling with microsensors for pH, T, O2 and ORP showed the geochemical effects are localized in a small area around the vents and highly variable. In measurements remote from the vent, the pH reached a value of 7.6 at a depth of 0.06 m. In a CO2 venting channel, pH reduced to below 5. Steep temperature profiles were indicative of a heat source inside the sediment. Elevated total alkalinity and Ca2+ levels showed calcite dissolution. Venting decreased sulfate reduction rates, but not aerobic respiration. A transport-reaction model confirmed that a large fraction of the injected CO2 is transported laterally into the sediment and that the reactions between CO2 and sediment generate enough heat to elevate the temperature significantly. A CO2 leak will have only local consequences for sediment biogeochemistry, and only a small fraction of the escaped CO2 will reach the sediment surface.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...