ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-11-25
    Description: Large uncertainties about the energy resource potential and role in global climate change of gas hydrates result from uncertainty about how much hydrate is contained in marine sediments. During Leg 204 of the Ocean Drilling Program (ODP) to the accretionary complex of the Cascadia subduction zone, we sampled the gas hydrate stability zone (GHSZ) from the seafloor to its base in contrasting geological settings defined by a 3D seismic survey. By integrating results from different methods, including several new techniques developed for Leg 204, we overcome the problem of spatial under-sampling inherent in robust methods traditionally used for estimating the hydrate content of cores and obtain a high-resolution, quantitative estimate of the total amount and spatial variability of gas hydrate in this structural system. We conclude that high gas hydrate content (30–40% of pore space or 20–26% of total volume) is restricted to the upper tens of meters below the seafloor near the summit of the structure, where vigorous fluid venting occurs. Elsewhere, the average gas hydrate content of the sediments in the gas hydrate stability zone is generally 〈2% of the pore space, although this estimate may increase by a factor of 2 when patchy zones of locally higher gas hydrate content are included in the calculation. These patchy zones are structurally and stratigraphically controlled, contain up to 20% hydrate in the pore space when averaged over zones ∼10 m thick, and may occur in up to ∼20% of the region imaged by 3D seismic data. This heterogeneous gas hydrate distribution is an important constraint on models of gas hydrate formation in marine sediments and the response of the sediments to tectonic and environmental change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Highlights • The pre-dill assessment of seismic data yielded identification of total 22 gas hydrate prospective sites. • The paper details the pre-expedition studies for identification of 18 Gas hydrate prospects. • On-board dynamic review studies for delineation of pre-expedition sites also detailed. • The drilling results matched with pre-expedition prediction, validated approach adopted for gas hydrate prospecting. Abstract After completing the first expedition of India's National Gas Hydrate Program (NGHP-01) in 2006, it was concluded that for the next expedition (National Gas Hydrate Program 02; NGHP-02), a new drill site review effort should focus on identifying potential deep-water offshore gas hydrate accumulations in sand dominated depositional environments. Therefore, geological and geophysical data analysis and 3D seismic data interpretation along with associated seismic modeling were carried out in three areas of the Krishna-Godavari Basin: Areas B, C, and E. Conventional petroleum exploration approaches of seismic amplitude evaluation were adapted to prospect for potentially sand-rich depositional systems within the gas hydrate stability zone. Subsequently, these prospective areas were further assessed through the geological and geophysical evaluation of depositional setting, gas sources, and gas migration pathways. In Area B, prospecting focused on a large anticlinal structure with a prominent bottom-simulating reflector and several key horizons that indicated evidence for potential sand-hosted hydrate occurrences. In Area C, the prospects were distributed throughout various settings within a very large deep-water channel-levee-fan system with complex indications of potential gas hydrate occurrence in sand-prone seismic facies. In Area E, prospects were associated with high amplitude events within inferred channel-levee sequences. Based on the pre-expedition/onboard drill-site evaluation, the 22 most promising sites in the Krishna-Godavari Basin were identified and prioritized to investigate and delineate a total of 17 identified gas hydrate prospects. This paper describes the geo-scientific studies carried out prior to NGHP-02 for site identification, evaluation and prioritization. An important outcome of this study is the identification of two potentially producible gas hydrate systems inferred to host significant quantities of gas hydrate in stratigraphic-structural traps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...