ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2019-09-23
    Description: Current de-oxygenation of the oceans is associated with severe habitat loss and distinct changes in the species composition of bentho-pelagic communities. We investigated the distributions of epibenthic megafauna across the Peruvian OMZ (11°S) at water depths ranging from ∼80 to 1000 m water depth using sea floor images. Likely controls of distributions were adressed by combining the abundances of major groups with geochemical parameters and sea-floor topography. In addition to bottom-water oxygen levels and organic-carbon availability, particular emphasis is laid on the effects of local hydrodynamics. Beside the occurrence of microbial mats at the shelf and upper slope, distinct zones of highly abundant megafauna, dominated by gastropods (900 ind. m−2), ophiuroids (140 ind. m−2), and pennatulaceans (20 ind. m−2), were observed at the lower boundary of the OMZ. Their distribution extended from 460 m water depth (O2 levels 〈 2 μM), where gastropods were abundant, to 680 m (O2 ∼6 μM) where epifaunal abundances declined sharply. Bottom water O2 represents a major factor that limits the ability of metazoans to invade deeply into the OMZ where they could have access to labile organic carbon. However, depending on their feeding mode, the distribution of organisms appeared to be related to local hydrodynamics caused by the energy dissipation of incipient internal M2 tides affecting the suspension, transport and deposition of food particles. This was particularly evident in certain sections of the investigated transect. At these potentially critical sites, energy dissipation of internal tides is associated with high bottom shear stress and high turbulences and coincides with elevated turbidity levels in the benthic boundary layer, increased Zr/Al-ratios, low sedimentation rates as well as a shift in the grain size towards coarser particles. In or near such areas, abundant suspension-feeding organisms, such as ophiuroids, pennatulaceans, and tunicates were present, whereas deposit-feeding gastropods were absent. The influence of local hydrodynamic conditions on the distribution of epibenthic organisms has been neglected in OMZ studies, although it has been considered in other settings.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-10-20
    Description: This study investigates the biogeochemical processes that control the benthic fluxes of dissolved nitrogen (N) species in Boknis Eck - a 28 m deep site in the Eckernförde Bay (southwestern Baltic Sea). Bottom water oxygen concentrations (O2-BW) fluctuate greatly over the year at Boknis Eck, being well-oxygenated in winter and experiencing severe bottom water hypoxia and even anoxia in late summer. The present communication addresses the winter situation (February 2010). Fluxes of ammonium (NH4+), nitrate (NO3-) and nitrite (NO2-) were simulated using a benthic model that accounted for transport andbiogeochemical reactions and constrained with ex situ flux measurements and sediment geochemical analysis. The sediments were a net sink for NO3- (-0.35 mmol m-2 d-1 of NO3-), of which 75% was ascribed to dissimilatory reduction of nitrate to ammonium (DNRA) by sulfide oxidizing bacteria, and 25% to NO3- reduction to NO2- by denitrifying microorganisms. NH4+ fluxes were high (1.74 mmol m-2d-1 of NH4+), mainly due to the degradation of organic nitrogen, and directed out of the sediment. NO2-fluxes were negligible. The sediments in Boknis Eck are, therefore, a net source of dissolved inorganic nitrogen(DIN = NO3- + NO2- + NH4+) during winter. This is in large part due to bioirrigation, which accounts for 76% of the benthic efflux of NH4+, thus reducing the capacity for nitrification of NH4+. The combined rate of fixed N loss by denitrification and anammox was estimated at 0.08 mmol m-2 d-1 of N2, which is at the lower end of previously reported values. A systematic sensitivity analysis revealed that denitrification and anammox respond strongly and positively to the concentration of NO3- in the bottomwater (NO3-BW).Higher O2-BW decreases DNRA and denitrification but stimulates both anammox and the contribution ofanammox to total N2 production (%Ramx). A complete mechanistic explanation of these findings is provided. Our analysis indicates that nitrification is the geochemical driving force behind the observed correlation between %Ramx and water depth in the seminal study of Dalsgaard et al. (2005). Despite remaining uncertainties, the results provide a general mechanistic framework for interpreting the existing knowledge of N-turnover processes and fluxes in continental margin sediments, as well as predicting the types of environment where these reactions are expected to occur prominently.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Benthic nitrogen (N) cycling was investigated at six stations along a transect traversing the Peruvian oxygen minimum zone (OMZ) at 11 °S. An extensive dataset including porewater concentration profiles and in situ benthic fluxes of nitrate (NO3–), nitrite (NO2–) and ammonium (NH4+) was used to constrain a 1–D reaction–transport model designed to simulate and interpret the measured data at each station. Simulated rates of nitrification, denitrification, anammox and dissimilatory nitrate reduction to ammonium (DNRA) by filamentous large sulfur bacteria (e.g. Beggiatoa and Thioploca) were highly variable throughout the OMZ yet clear trends were discernible. On the shelf and upper slope (80 – 260 m water depth) where extensive areas of bacterial mats were present, DNRA dominated total N turnover (less-than-or-equals, slant 2.9 mmol N m–2 d–1) and accounted for greater-or-equal, slanted 65 % of NO3– + NO2– uptake by the sediments from the bottom water. Nonetheless, these sediments did not represent a major sink for dissolved inorganic nitrogen (DIN = NO3– + NO2– + NH4+) since DNRA reduces NO3– and, potentially NO2–, to NH4+. Consequently, the shelf and upper slope sediments were recycling sites for DIN due to relatively low rates of denitrification and high rates of ammonium release from DNRA and ammonification of organic matter. This finding contrasts with the current opinion that sediments underlying OMZs are a strong sink for DIN. Only at greater water depths (300 – 1000 m) did the sediments become a net sink for DIN. Here, denitrification was the major process (less-than-or-equals, slant 2 mmol N m–2 d–1) and removed 55 – 73 % of NO3– and NO2– taken up by the sediments, with DNRA and anammox accounting for the remaining fraction. Anammox was of minor importance on the shelf and upper slope yet contributed up to 62 % to total N2 production at the 1000 m station. The results indicate that the partitioning of oxidized N (NO3–, NO2–) into DNRA or denitrification is a key factor determining the role of marine sediments as DIN sinks or recycling sites. Consequently, high measured benthic uptake rates of oxidized N within OMZs do not necessarily indicate a loss of fixed N from the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: We present sedimentary geochemical data and in situ benthic flux measurements of dissolved inorganic nitrogen (DIN: NO3−, NO2−, NH4+) and oxygen (O2) from 7 sites with variable sand content along 18°N offshore Mauritania (NW Africa). Bottom water O2 concentrations at the shallowest station were hypoxic (42 μM) and increased to 125 μM at the deepest site (1113 m). Total oxygen uptake rates were highest on the shelf (−10.3 mmol O2 m−2 d−1) and decreased quasi-exponentially with water depth to −3.2 mmol O2 m−2 d−1. Average denitrification rates estimated from a flux balance decreased with water depth from 2.2 to 0.2 mmol N m−2 d−1. Overall, the sediments acted as net sink for DIN. Observed increases in δ15NNO3 and δ18ONO3 in the benthic chamber deployed on the shelf, characterized by muddy sand, were used to calculate apparent benthic nitrate fractionation factors of 8.0‰ (15εapp) and 14.1‰ (18εapp). Measurements of δ15NNO2 further demonstrated that the sediments acted as a source of 15N depleted NO2−. These observations were analyzed using an isotope box model that considered denitrification and nitrification of NH4+ and NO2−. The principal findings were that (i) net benthic 14N/15N fractionation (εDEN) was 12.9 ± 1.7‰, (ii) inverse fractionation during nitrite oxidation leads to an efflux of isotopically light NO2− (−22 ± 1.9‰), and (iii) direct coupling between nitrification and denitrification in the sediment is negligible. Previously reported εDEN for fine-grained sediments are much lower (4–8‰). We speculate that high benthic nitrate fractionation is driven by a combination of enhanced porewater–seawater exchange in permeable sediments and the hypoxic, high productivity environment. Although not without uncertainties, the results presented could have important implications for understanding the current state of the marine N cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...