ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • Elsevier  (3)
Collection
Years
  • 1
    Publication Date: 2021-02-08
    Description: Fossil carbonate skeletons of marine organisms are archives for understanding the development and evolution of palaeo-environments. However, the correct assessment of past environment dynamics is only possible when pristine skeletons and their biogenic characteristics are unequivocally distinguishable from diagenetically-altered skeletal elements and non-biogenic features. In this study, we extend our work on diagenesis of biogenic aragonite (Casella et al. 2017) to the investigation of biogenic low-Mg calcite using brachiopod shells. We examined and compared microstructural characteristics induced by laboratory-based alteration to structural features derived from diagenetic alteration in natural environments. We used four screening methods: cathodoluminescence (CL), cryogenic and conventional field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and electron backscatter diffraction (EBSD). We base our assessments of diagenetic alteration and overprint on measurements of, a) images of optical overprint signals, b) changes in calcite crystal orientation patterns, and c) crystal co-orientation statistics. According to the screening process, altered and overprinted samples define two groups. In Group 1 the entire shell is diagenetically overprinted, whereas in Group 2 the shell contains pristine as well as overprinted parts. In the case of Group 2 shells, alteration occurred either along the periphery of the shell including the primary layer or at the interior-facing surface of the fibrous/columnar layer. In addition, we observed an important mode of the overprinting process, namely the migration of diagenetic fluids through the endopunctae corroborated by mineral formation and overprinting in their immediate vicinity, while leaving shell parts between endopunctae in pristine condition. Luminescence (CL) and microstructural imaging (FE-SEM) screening give first-order observations of the degree of overprint as they cover macro-to micron scale alteration features. For a comprehensive assessment of diagenetic overprint these screening methods should be complemented by screening techniques such as EBSD and AFM. They visualise diagenetic changes at submicron and nanoscale levels depicting the replacement of pristine nanocomposite mesocrystal biocarbonate (NMB) by inorganic rhombohedral calcite (IRC). The integration of screening methods allows for the unequivocal identification of highly-detailed alteration features as well as an assessment of the degree of diagenetic alteration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-08
    Description: El Niño-Southern Oscillation (ENSO) is a global climate variablility, which fundamentally influences environmental patterns of the Humboldt Current System (HCS) off Chile and Peru. The surf clams Donax obesulus and Mesodesma donacium are dominant and highly productive bivalves of exposed sandy beaches of the HCS. Existing knowledge indicates that El Niño (EN, warm phase of ENSO) and La Niña (LN, cold phase of ENSO) affect populations of both species in a different way, although understanding of the mechanisms underlying these effects is still lacking. The aim of this study was to test hypotheses attempting to explain field observations on the effect of strong EN or LN events by using controlled experimental conditions. Growth and mortality rates of both species were registered during a four-week experiment under EN temperature conditions, normal temperature conditions and LN temperature conditions. While D. obesulus exhibited reduced growth and higher mortality under LN conditions, M. donacium showed reduced growth and higher mortality under EN conditions. The results clearly indicate different temperature tolerance windows for each species, possibly reflecting the evolutionary origins of the Donacidae and Mesodesmatidae in regions with contrasting temperature regimes. These results provide experimental support for previous hypotheses suggesting that thermal tolerance is the driving factor behind observed changes in the species distributions of D. obesulus and M. donacium during the extreme phases of ENSO. 2010 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Highlights • Cell-reorganization; commissure: muti-cell-layered, central shell: single-cell-layered. • Individual fibres are secreted by several cells at the same time. • Tight cooperation of cells for the coordinated secretion of organic membrane and mineral. • Lack of extrapallial space between OME cells and developing fibres. • Mineral transport to sites of mineralization occurs via ion transport through cell membrane. Abstract To understand mineral transport pathways for shell secretion and to assess differences in cellular activity during mineralization, we imaged with TEM and FE-SEM ultrastructural characteristics of outer mantle epithelium (OME) cells. Imaging was carried out on Magellania venosa shells embedded/etched, chemically fixed/decalcified and high-pressure frozen/freeze-substituted samples from the commissure, central shell portions and from puncta. Imaging results are complemented with morphometric evaluations of volume fractions of membrane-bound organelles. At the commissure the OME consists of several layers of cells. These cells form oblique extensions that, in cross-section, are round below the primary layer and flat underneath fibres. At the commissure the OME is multi-cell layered, in central shell regions it is single-cell layered. When actively secreting shell carbonate extrapallial space is lacking, because OME cells are in direct contact with the calcite of the forming fibres. Upon termination of secretion, OME cells attach via apical hemidesmosomes to extracellular matrix membranes that line the proximal surface of fibres. At the commissure volume fractions for vesicles, mitochondria and lysosomes are higher relative to single-cell layered regions, whereas for endoplasmic-reticulum and Golgi apparatus there is no difference. FE-SEM, TEM imaging reveals the lack of extrapallial space between OME cells and developing fibres. In addition, there is no indication for an amorphous precursor within fibres when these are in active secretion mode. Accordingly, our results do not support transport of minerals by vesicles from cells to sites of mineralization, rather by transfer of carbonate ions via transport mechanisms associated with OME cell membranes.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: image
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...