ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (511)
  • Elsevier  (511)
  • 1
    Publication Date: 2015-09-22
    Description: Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (〉500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year. We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Carbon capture and storage (CCS) is a key technology to reduce carbon dioxide (CO2) emissions from industrial processes in a feasible, substantial, and timely manner. For geological CO2 storage to be safe, reliable, and accepted by society, robust strategies for CO2 leakage detection, quantification and management are crucial. The STEMM-CCS (Strategies for Environmental Monitoring of Marine Carbon Capture and Storage) project aimed to provide techniques and understanding to enable and inform cost-effective monitoring of CCS sites in the marine environment. A controlled CO2 release experiment was carried out in the central North Sea, designed to mimic an unintended emission of CO2 from a subsurface CO2 storage site to the seafloor. A total of 675 kg of CO2 were released into the shallow sediments (~3 m 49 below seafloor), at flow rates between 6 and 143 kg/d. A combination of novel techniques, adapted versions of existing techniques, and well-proven standard techniques were used to detect, characterise and quantify gaseous and dissolved CO2 in the sediments and the overlying seawater. This paper provides an overview of this ambitious field experiment. We describe the preparatory work prior to the release experiment, the experimental layout and procedures, the methods tested, and summarise the main results and the lessons learnt.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: Highlights: • Lagrangian ocean analysis is a powerful way to analyse the output of ocean circulation models • We present a review of the Kinematic framework, available tools, and applications of Lagrangian ocean analysis • While there are unresolved questions, the framework is robust enough to be used widely in ocean modelling Abstract: Lagrangian analysis is a powerful way to analyse the output of ocean circulation models and other ocean velocity data such as from altimetry. In the Lagrangian approach, large sets of virtual particles are integrated within the three-dimensional, time-evolving velocity fields. Over several decades, a variety of tools and methods for this purpose have emerged. Here, we review the state of the art in the field of Lagrangian analysis of ocean velocity data, starting from a fundamental kinematic framework and with a focus on large-scale open ocean applications. Beyond the use of explicit velocity fields, we consider the influence of unresolved physics and dynamics on particle trajectories. We comprehensively list and discuss the tools currently available for tracking virtual particles. We then showcase some of the innovative applications of trajectory data, and conclude with some open questions and an outlook. The overall goal of this review paper is to reconcile some of the different techniques and methods in Lagrangian ocean analysis, while recognising the rich diversity of codes that have and continue to emerge, and the challenges of the coming age of petascale computing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-27
    Description: Ten ODP sites drilled in a depth transect (2164–4775 m water depth) during Leg 172 recovered high-deposition rate (〉20 cm/kyr) sedimentary sections from sediment drifts in the western North Atlantic. For each site an age model covering the past 0.8–0.9 Ma has been developed. The time scales have a resolution of 10–20 kyr and are derived by tuning variations of estimated carbonate content to the orbital parameters precession and obliquity. Based on the similarity in the signature of proxy records and the spectral character of the time series, the sites are divided into two groups: precession cycles are better developed in carbonate records from a group of shallow sites (2164–2975 m water depth, Sites 1055–1058) while the deeper sites (2995–4775 m water depth, Sites 1060–1063) are characterized by higher spectral density in the obliquity band. The resulting time scales show excellent coherence with other dated carbonate and isotope records from low latitudes. Besides the typical Milankovitch cyclicity significant variance of the resulting carbonate time series is concentrated at millennial-scale changes with periods of about 12, 6, 4, 2.5, and 1.5 kyr. Comparisons of carbonate records from the Blake Bahama Outer Ridge and the Bermuda Rise reveal a remarkable similarity in the time and frequency domain indicating a basin-wide uniform sedimentation pattern during the last 0.9 Ma.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-04
    Description: Highlights: • Arctic sea ice extent and solid freshwater in 14 CORE-II models are inter-compared. • The models better represent the variability than the mean state. • The September ice extent trend is reasonably represented by the model ensemble mean. • The descending trend of ice thickness is underestimated compared to observations. • The models underestimate the reduction in solid freshwater content in recent years. Abstract: The Arctic Ocean simulated in fourteen global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE II) is analyzed. The focus is on the Arctic sea ice extent, the solid freshwater (FW) sources and solid freshwater content (FWC). Available observations are used for model evaluation. The variability of sea ice extent and solid FW budget is more consistently reproduced than their mean state in the models. The descending trend of September sea ice extent is well simulated in terms of the model ensemble mean. Models overestimating sea ice thickness tend to underestimate the descending trend of September sea ice extent. The models underestimate the observed sea ice thinning trend by a factor of two. When averaged on decadal time scales, the variation of Arctic solid FWC is contributed by those of both sea ice production and sea ice transport, which are out of phase in time. The solid FWC decreased in the recent decades, caused mainly by the reduction in sea ice thickness. The models did not simulate the acceleration of sea ice thickness decline, leading to an underestimation of solid FWC trend after 2000. The common model behavior, including the tendency to underestimate the trend of sea ice thickness and March sea ice extent, remains to be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-04
    Description: Highlights: • Arctic liquid freshwater budget simulated in 14 CORE-II models is studied. • The models better represent the temporal variability than the mean state. • Multi-model mean (MMM) FW fluxes compare well with observations. • MMM FWC shows an upward trend in the recent years, with an underestimated rate. • FW flux interannual variability is more consistent where volume flux determines it. Abstract: The Arctic Ocean simulated in 14 global ocean-sea ice models in the framework of the Coordinated Ocean-ice Reference Experiments, phase II (CORE-II) is analyzed in this study. The focus is on the Arctic liquid freshwater (FW) sources and freshwater content (FWC). The models agree on the interannual variability of liquid FW transport at the gateways where the ocean volume transport determines the FW transport variability. The variation of liquid FWC is induced by both the surface FW flux (associated with sea ice production) and lateral liquid FW transport, which are in phase when averaged on decadal time scales. The liquid FWC shows an increase starting from the mid-1990s, caused by the reduction of both sea ice formation and liquid FW export, with the former being more significant in most of the models. The mean state of the FW budget is less consistently simulated than the temporal variability. The model ensemble means of liquid FW transport through the Arctic gateways compare well with observations. On average, the models have too high mean FWC, weaker upward trends of FWC in the recent decade than the observation, and low consistency in the temporal variation of FWC spatial distribution, which needs to be further explored for the purpose of model development.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-09-16
    Description: As the planet cooled from peak warmth in the early Cenozoic, extensive Northern Hemisphere ice sheets developed by 2.6 Ma ago, leading to changes in the circulation of both the atmosphere and oceans. From not, vert, similar2.6 to not, vert, similar1.0 Ma ago, ice sheets came and went about every 41 ka, in pace with cycles in the tilt of Earth’s axis, but for the past 700 ka, glacial cycles have been longer, lasting not, vert, similar100 ka, separated by brief, warm interglaciations, when sea level and ice volumes were close to present. The cause of the shift from 41 ka to 100 ka glacial cycles is still debated. During the penultimate interglaciation, not, vert, similar130 to not, vert, similar120 ka ago, solar energy in summer in the Arctic was greater than at any time subsequently. As a consequence, Arctic summers were not, vert, similar5 °C warmer than at present, and almost all glaciers melted completely except for the Greenland Ice Sheet, and even it was reduced in size substantially from its present extent. With the loss of land ice, sea level was about 5 m higher than present, with the extra melt coming from both Greenland and Antarctica as well as small glaciers. The Last Glacial Maximum (LGM) peaked not, vert, similar21 ka ago, when mean annual temperatures over parts of the Arctic were as much as 20 °C lower than at present. Ice recession was well underway 16 ka ago, and most of the Northern Hemisphere ice sheets had melted by 6 ka ago. Solar energy reached a summer maximum (9% higher than at present) not, vert, similar11 ka ago and has been decreasing since then, primarily in response to the precession of the equinoxes. The extra energy elevated early Holocene summer temperatures throughout the Arctic 1–3 °C above 20th century averages, enough to completely melt many small glaciers throughout the Arctic, although the Greenland Ice Sheet was only slightly smaller than at present. Early Holocene summer sea ice limits were substantially smaller than their 20th century average, and the flow of Atlantic water into the Arctic Ocean was substantially greater. As summer solar energy decreased in the second half of the Holocene, glaciers re-established or advanced, sea ice expanded, and the flow of warm Atlantic water into the Arctic Ocean diminished. Late Holocene cooling reached its nadir during the Little Ice Age (about 1250–1850 AD), when sun-blocking volcanic eruptions and perhaps other causes added to the orbital cooling, allowing most Arctic glaciers to reach their maximum Holocene extent. During the warming of the past century, glaciers have receded throughout the Arctic, terrestrial ecosystems have advanced northward, and perennial Arctic Ocean sea ice has diminished. Here we review the proxies that allow reconstruction of Quaternary climates and the feedbacks that amplify climate change across the Arctic. We provide an overview of the evolution of climate from the hot-house of the early Cenozoic through its transition to the ice-house of the Quaternary, with special emphasis on the anomalous warmth of the middle Pliocene, early Quaternary warm times, the Mid Pleistocene transition, warm interglaciations of marine isotope stages 11, 5e, and 1, the stage 3 interstadial, and the peak cold of the last glacial maximum.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-05
    Description: We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9–20 °C water, with maximum abundances from 13–17 °C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 °C, with peak abundances from 0 to 9 °C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-20
    Description: Highlights: ► We imaged a 3 × 5-km giant fluid seep structure, the Giant Gjallar Vent, off mid-Norway. ► We combined neural network analysis and sandbox modeling. ► We define the internal geometries of the underlying pipe. ► The Giant Gjallar Vent may be a proto-fluid seep at an early stage of its development. An exploration 3D seismic data set from the Gjallar Ridge off mid-Norway images a giant fluid seep structure, 3 × 5 km wide, which connects to late Palaeocene magmatic sills at depth. Two of the pipes that have developed as hydrothermal vents reach all the way to the modern seafloor implying that they either were active much longer than the original hydrothermal activity or have been reactivated. We combine detailed seismic analysis of the northern pipe and sandbox modeling to constrain pipe initiation and propagation. Although both the seismic data and the sandbox models suggest that fluids at depth are focused through a vertical conduit, sandbox models show that fluids ascend and reach a critical depth migration where focused migration abruptly transforms into distributed fluid flow through unconsolidated sediments. This indicates that at this level the sediments are intensely deformed during pipe propagation, creating a V-shaped structure, i.e. an inverted cone at depth and a positive relief anomaly, 5 to 10 m high, at the seafloor, which is clearly identified on 3D seismic data. Comparison of the geometries observed in sandbox modeling with the seismically observed geometries of the Giant Gjallar Vent suggests that the Giant Gjallar Vent may be a proto-fluid seep at an early stage of its development, preceding the future collapse of the structure forming a seafloor depression. Our results imply that the Gjallar Giant Vent can be used as a window into the geological processes active in the deep parts of the Vøring Basin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: We present a magnesium (Mg) and strontium (Sr) record from an aragonitic speleothem (Grotte de Piste, Morocco, 34‬°N; 04°W) providing a reconstruction of effective rainfall from 619 to 1962 AD. The corresponding drip site was monitored over 2 yr for drip water Mg/Ca and Sr/Ca ratios. Results show evidence for prior aragonite precipitation, which can explain negative correlations between speleothem Mg and Sr concentrations. The data shown here have important climate implications concerning the evolution of the North Atlantic Oscillation (NAO). A comparison of the stalagmite data from Grotte de Piste with an updated tree ring based drought reconstruction from Morocco and other NAO related proxy records confirms that the Medieval Warm Period (MWP) was dominated by NAO+ conditions. The stalagmite record and multiple proxy records from the Iberian Peninsula, however, suggest that considerable rainfall variability occurred during the MWP. This implies that the NAO has been more variable during the MWP than formerly suggested.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...