ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-01-31
    Description: During R/V Meteor cruise 141/1, pore fluids of near surface sediments were investigated to find indications for hydrothermal activity in the Terceira Rift (TR), a hyper‐slow spreading center in the Central North Atlantic Ocean. To date, submarine hydrothermal fluid venting in the TR has only been reported for the D. João de Castro seamount, which presently seems to be inactive. Pore fluids sampled close to a volcanic cone at 2800 m water depth show an anomalous composition with Mg, SO4, and total alkalinity (TA) concentrations significantly higher than seawater and a nearby reference core. The most straightforward way of interpreting these deviations is the dissolution of the hydrothermally formed mineral caminite (MgSO4 0.25Mg(OH)2 0.2H2O). This interpretation is corroborated by a thorough investigation of fluid isotope systems (δ26Mg, δ30Si, δ34S, δ44/42Ca, and 87Sr/86Sr). Caminite is known from mineral assemblages with anhydrite, and forms in hydrothermal recharge zones only under specific conditions such as high fluid temperatures and in altered oceanic crust, which are conditions generally met at the TR. We hypothesize that caminite was formed during hydrothermal activity and is now dissolving during the waning state of the hydrothermal system, so that caminite mineralization is shifted out of its stability zone. Ongoing fluid circulation through the basement is transporting the geochemical signal via slow advection towards the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Highlights • Overview on geochemical composition of pore water and solid phase of sediments on the Azores Plateau. • Evidence for deep marine hydrothermal activity on the Azores Plateau. • Pore water data suggest ongoing anaerobic oxidation of methane and carbonate recrystallization. The Azores Plateau is an active magmatic region in the Central North Atlantic Ocean. In this study, we present a comprehensive data set of major element compositions and 87Sr/86Sr ratios of pore waters from surface sediments (0–9 mbsf) of the Azores Plateau. Based on distinct geochemical signatures we can separate normal marine from hydrothermally affected sediments. Normal marine sediments can further be differentiated by their ash content. Pore waters of ash rich gravity cores (GCs) do not show any deviations from seawater values except of a minor increase in Sr. In contrast, ash poor GCs generally show a trend for decreasing Ca with increasing depth, accompanied by a minor SO4 decrease and a more pronounced Sr increase. We suggest that these deviations are caused by processes such as anaerobic oxidation of methane and carbonate recrystallization. At four additional sample locations we observed a decrease in Mg and SO4 accompanied by a Ca increase in the pore waters, a pattern typical for hydrothermal fluids. The existence of hydrothermal systems in this region are corroborated by multi-channel seismic data, suggesting that sill or dyke intrusions are present in the subsurface close to the core locations. Overall, our observations offer preliminary indications for the existence of submarine hydrothermal systems on the Azores Plateau away from the Mid- Atlantic Ridge.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: In 2013, high-temperature vent fluids were sampled in the Nifonea vent field. This field is located within the caldera of a large shield-type volcano of the Vate Trough, a young extensional rift in the New Hebrides back-arc. Hydrothermal venting occurs as clear and black smoker fluids with temperatures up to 368 °C, the hottest temperatures measured so far in the western Pacific. The physico-chemical conditions place the fluids within the two-phase field of NaCl–H2O, and venting is dominated by vapour phase fluids with Cl concentrations as low as 25 mM. The fluid composition, which differs between the individual vent sites, is interpreted to reflect the specific geochemical fluid signature of a hydrothermal system in its initial, post-eruptive stage. The strong Cl depletion is accompanied by low alkali/Cl ratios compared to more evolved hydrothermal systems, and very high Fe/Cl ratios. The concentrations of REY (180 nM) and As (21 μM) in the most Cl-depleted fluid are among the highest reported so far for submarine hydrothermal fluids, whereas the inter-element REY fractionation is only minor. The fluid signature, which has been described here for the first time in a back-arc setting, is controlled by fast fluid passage through basaltic volcanic rocks, with extremely high water-rock ratios and only limited water-rock exchange, phase separation and segregation, and (at least) two-component fluid mixing. Metals and metalloids are unexpectedly mobile in the vapour phase fluids, and the strong enrichments of Fe, REY, and As highlight the metal transport capacity of low-salinity, low-density vapours at the specific physico-chemical conditions at Nifonea. One possible scenario is that the fluids boiled before the separated vapour phase continued to react with fresh glassy lavas. The mobilization of metals is likely to occur by leaching from fresh glass and grain boundaries and is supported by the high water/rock ratios. The enrichment of B and As is further controlled by their high volatility, whereas the strong enrichment of REY is also a consequence of the elevated concentrations in the host rocks. However, a direct contribution of metals such as As from magmatic degassing cannot be ruled out. The different fluid end-member composition of individual vent sites could be explained by mixing of vapour phase fluids with another fluid phase of different water/rock interaction history.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-06-07
    Description: Highlights • Chronometric dating of Neanderthal remains to 190 ka from the volcanic context of Wannen-Ochtendung. • Red thermoluminescence dating (RTL) of heated detritical quartz extracted from crustal xenoliths • Shortened and full single aliquot regeneration (SAR) protocols agree. • Perfect agreement of RTL dating with argon dating for the identical events Abstract The partial neurocranium of a Neanderthal was recovered from deposits related to the latest volcanic activities recorded at the Wannen Volcanic Group. This last volcanic event provided heated mineral samples for thermoluminescence (TL) and Ar/Ar dating, allowing the estimation of the age of the hominin remains. Novel TL methods using a much less time consuming measurement protocol and employing the orange-red TL-signal (R-TL) were applied, resulting in ages of 177 ± 18 ka and 176 ± 21 ka for two samples of different geology. This new data is compared with standard TL-approaches for one of the samples, which provide an age of 187 ± 29 ka. The luminescence data is contrasted with a newly obtained Ar/Ar-age of 191 ± 12 ka for a sample from the identical heating event. All TL-dating results provide congruent results and are in perfect accordance with Ar/Ar dating, showing the applicability and accuracy of the new TL approach employed. These data also agree well with the geological age estimates and other chronometric data, placing the volcanism at Wannen to around 180–190 ka and thus providing a Saalian age of the fossil. Such an old age, however, contrasts to the reported preliminary placement of this specimen late in the Neanderthal lineage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Changes in Atlantic Meridional Overturning Circulation (AMOC) strength exert a major influence on global atmospheric circulation patterns. However, the pacing and mechanisms of low-latitude responses to high-latitude forcing are insufficiently constrained so far. To elucidate the interaction of atmospheric and oceanic forcing in tropical South America during periods of major AMOC reductions (Heinrich Stadial 1 and the Younger Dryas) we generated a high-resolution foraminiferal multi-proxy record from off the Orinoco River based on Ba/Ca and Mg/Ca ratios, as well as stable isotope measurements. The data clearly indicate a three-phased structure of HS1 based on the reconfiguration of ocean currents in the tropical Atlantic Ocean. The initial phase (HS1a) is characterized by a diminished North Brazil Current, a southward displacement of the ITCZ, and moist conditions dominating northeastern Brazil. During subsequent HS1b, the NBC was even more diminished or yet reversed and the ITCZ shifted to its southernmost position. Hence, dryer conditions prevailed in northern South America, while eastern Brazil experienced maximally wet conditions. During the final stage, HS1c, conditions are similar to HS1a. The YD represents a smaller amplitude version of HS1 with a southward-shifted ITCZ. Our findings imply that the low-latitude continental climate response to high-latitude forcing is mediated by reconfigurations of surface ocean currents in low latitudes. Our new records demonstrate the extreme sensitivity of the terrestrial realm in tropical South America to abrupt perturbations in oceanic circulation during periods of unstable climate conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-06
    Description: Selecting appropriate indicators is essential to aggregate the information provided by climate model outputs into a manageable set of relevant metrics on which assessments of climate engineering (CE) can be based. From all the variables potentially available from climate models, indicators need to be selected that are able to inform scientists and society on the development of the Earth system under CE, as well as on possible impacts and side effects of various ways of deploying CE or not. However, the indicators used so far have been largely identical to those used in climate change assessments and do not visibly reflect the fact that indicators for assessing CE (and thus the metrics composed of these indicators) may be different from those used to assess global warming. Until now, there has been little dedicated effort to identifying specific indicators and metrics for assessing CE. We here propose that such an effort should be facilitated by a more decision-oriented approach and an iterative procedure in close interaction between academia, decision makers, and stakeholders. Specifically, synergies and trade-offs between social objectives reflected by individual indicators, as well as decision-relevant uncertainties should be considered in the development of metrics, so that society can take informed decisions about climate policy measures under the impression of the options available, their likely effects and side effects, and the quality of the underlying knowledge base.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-07-14
    Description: Fresh volcanic glasses from the extrusive section of the Troodos Ophiolite in Akaki Canyon are tholeiitic and basaltic to dacitic in composition. Compared to normal MORB they have extremely low fractionation corrected Na8, Fe8 and Ti8 and are enriched in fluid-mobile trace elements, including U, Ba, Rb, Sr and Pb, relative to non-fluid mobile elements of similar incompatibility. Trace element compositions of Akaki lavas define an array extending between ‘back-arc lava’-like compositions, and the field defined by Troodos boninites from the upper part of the lava sequence. Troodos lavas were derived from a mantle source that underwent early melt depletion, and later enrichment by both fluids and small degree melts. These processes can explain the unusual negative correlation of Pb/Ce with Zr/Nb and Ba/Nb in Troodos extrusives. Although some Troodos lavas are similar in composition to lavas from back-arc spreading centres, the boninites from the upper parts of the lava pile do not appear to have exact compositional equivalents among lavas from fore-arcs, back-arcs or other tectonic settings where similar rocktypes have been recovered. We suggest that the geochemical evolution inferred for the mantle source of Troodos lavas, together with geological evidence is most consistent with an origin for the Troodos Ophiolite at a spreading centre close to a ridge–trench–trench, or ridge–trench–transform triple junction, where highly depleted, subduction-modified, fluid-enriched mantle wedge material was able to upwell and decompress to shallow depths in a ‘fore-arc’ location. In such a tectonic setting, arc volcanism is captured by the spreading centre, explaining the lack of evidence for subaerial arc magmatism in Troodos. Rapid lateral migration of the triple junction could account for the similar ages of other Tethyan supra-subduction zone ophiolites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-02-08
    Description: Although many of the regions on and close to the mid-ocean ridges have been extensively mapped and sampled, the abyssal intraplate regions remain essentially unsampled and unmapped, leaving huge gaps in our understanding of their geologic history and present activity. Prominent bathymetric features in these intraplate regions are fracture zones. Here we present bathymetric and sampling information from a transatlantic transect along the Vema Fracture Zone (ca. 11 °N), covering crustal ages from 109 − 0 Ma on the African plate and 0–62 Ma on the South American plate. The Vema Fracture Zone is the intraplate trace of the active Vema Transform plate boundary, which offsets the present-day Mid-Atlantic Ridge by ca. 300 km left-laterally, juxtaposing zero-age crust with crust of 20 million years age. Our results show clear evidence of tectonic activity along most of the Fracture Zone, in most places likely associated with active fluid flow. Within the active Vema Transform at crustal ages of ca. 10 Ma we found clear indications of fluid flow both in the sediments and the overlying water column. This region is 〉120 km from the nearest spreading axis and increases by almost an order of magnitude the maximum off-axis distance that active hydrothermal discharge has been found in the oceanic crust. Sampling of the igneous seafloor was possible at all crustal ages and the accretionary fabric imprinted on the plate during its production was prominent everywhere. Seafloor sediments show signs of extensive bioturbation. In one area, high concentrations of spherical Mn-nodules were also found and sampled. At the end of the transect we also mapped and sampled the Puerto Rico Trough, a 〉8000 m deep basin north of the Caribbean arc. Here the seafloor morphology is more complicated and strongly influenced by transpressive tectonics.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Throughout the last decades there has been a world-wide, general warming trend. In this study, we use the example of the Baltic Sea to resolve the overall estimated temperature trend into smaller, meso-scale spatial units. Afterwards, we investigate the spatially resolved potential impact of the temperature trend on larval survival for two important fish species, cod and sprat. We used two different sets of hydrographic data: (i) long-term temporally and depth-resolved data measured in situ originating from one geographic position and (ii) long-term horizontally resolved data, originating from a circulation model. In contrast to basin-wide integrated results, our modelling approach revealed different results related to smaller spatial scales. In shallow and coastal areas non-significant long-term temperature trends were observed. In some cases even decreasing temperature trends were found. Average distribution maps (1973–2010) of cod and sprat eggs and larvae confirmed the higher importance of central, deep basins as nursery grounds. Applying the temperature trends when calculating cod larval window of opportunity values, resulted in decreased durations of 1–3 days (~ 3–13%) in most areas. Sprat larval window of opportunity values mainly increased up to 4 days (~ 45%), indicating a potential reproduction advantage of sprat over cod under anticipated future temperature increase. Highlights ► We resolve the overall positive temperature trend in the Baltic into meso-scale spatial units and investigate the impact on larval survival for two important fish species, cod and sprat. ► In shallow and coastal areas non-significant or even negative temperature trends occurred. ► Cod larval window of opportunity values decreased by 1–3 days (~ 3–13%). ► Sprat larval window of opportunity values increased up to 4 days (~ 45%). ► Sprat will have a reproduction advantage over cod under anticipated future temperature change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-08-09
    Description: This study was performed to investigate gas formation and gas saturation conditions related to acoustic turbidity in shallow (∼40 m deep) marine basins. The Arkona Basin, Baltic Sea, with its organic-rich fine-grained surface sediment provides an ideal “Natural Laboratory” to characterise free gas using seismic, geoacoustic, and geochemical methods. The area of acoustic turbidity covers about 1500 km2 of the central Arkona Basin, corresponding to areas where organic-rich post-glacial sediments exceed 4–6 m in thickness. The highest concentration of pore water methane (7660 μmol L−1), found in areas of high acoustic turbidity, was near the calculated lower limit of methane solubility for the measured in situ temperature, salinity, and pressure. Pore water methane concentration decreased to near 4 μmol L−1 in areas outside of the zone of high acoustic turbidity. Stable carbon (−70.7‰ to −92.3‰ PDB) and hydrogen (−124‰ to −185‰ SMOW) isotope values of methane indicate that methane is predominantly formed by microbial CO2 reduction in Arkona Basin surface sediments and rules out significant contributions of other sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...