ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • Copernicus Publications (EGU)  (3)
  • Elsevier  (1)
  • AGU
  • 2015-2019  (4)
Collection
  • Other Sources  (4)
Years
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 8 (1). pp. 51-68.
    Publication Date: 2017-12-19
    Description: Large-scale fully coupled Earth system models (ESMs) are usually applied in climate projections like the IPCC (Intergovernmental Panel on Climate Change) reports. In these models internal variability is often within the correct order of magnitude compared with the observed climate, but due to internal variability and arbitrary initial conditions they are not able to reproduce the observed timing of climate events or shifts as for instance observed in the El Niño–Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO), or the Atlantic Meridional Overturning Circulation (AMOC). Additional information about the real climate history is necessary to constrain ESMs; not only to emulate the past climate, but also to introduce a potential forecast skill into these models through a proper initialisation. We attempt to do this by extending the fully coupled climate model Max Planck Institute Earth System Model (MPI-ESM) using a partial coupling technique (Modini-MPI-ESM). This method is implemented by adding reanalysis wind-field anomalies to the MPI-ESM's inherent climatological wind field when computing the surface wind stress that is used to drive the ocean and sea ice model. Using anomalies instead of the full wind field reduces potential model drifts, because of different mean climate states of the unconstrained MPI-ESM and the partially coupled Modini-MPI-ESM, that could arise if total observed wind stress was used. We apply two different reanalysis wind products (National Centers for Environmental Prediction, Climate Forecast System Reanalysis (NCEPcsfr) and ERA-Interim reanalysis (ERAI)) and analyse the skill of Modini-MPI-ESM with respect to several observed oceanic, atmospheric, and sea ice indices. We demonstrate that Modini-MPI-ESM has a significant skill over the time period 1980–2013 in reproducing historical climate fluctuations, indicating the potential of the method for initialising seasonal to decadal forecasts. Additionally, our comparison of the results achieved with the two reanalysis wind products NCEPcsfr and ERAI indicates that in general applying NCEPcsfr results in a better reconstruction of climate variability since 1980.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-21
    Description: Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-04
    Description: The repercussions of surface ocean currents for the near-surface wind and the air-sea momentum flux are investigated in two versions of a global climate model with eddying ocean. The focus is on the effect of mesoscale ocean current features at scales of less than 150 km, by considering high-pass filtered, monthly-mean model output fields. We find a clear signature of a mesoscale oceanic imprint in the wind fields over the energetic areas of the oceans, particularly along the extensions of the western boundary currents and the Antarctic Circumpolar Current. These areas are characterized by a positive correlation between mesoscale perturbations in the curl of the surface currents and the wind curl. The coupling coefficients are spatially non-uniform and show a pronounced seasonal cycle. The positive feedback of mesoscale current features on the near-surface wind acts in opposition to their damping effect on the wind stress. A tentative incorporation of this feedback in the surface stress formulation of an eddy-permitting global ocean-only model leads to a gain in the kinetic energy of up to 10 %, suggesting a fundamental shortcoming of present ocean model configurations.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The parameterization of sub-grid scale processes is one of the key challenges towards improved numerical simulations of the atmospheric and oceanic circulation. Numerical weather prediction models as well as climate models would benefit from more sophisticated turbulence closures that allow for less spurious dissipation at the grid-scale and consequently higher and more realistic levels of eddy kinetic energy (EKE). Recent studies propose to use a hyperviscous closure in combination with an additional deterministic forcing term as a negative viscosity to represent backscatter of energy from unresolved scales. The sub-grid EKE is introduced as an additional prognostic variable that is fed by dissipation at the grid scale, and enables recycling of EKE via the backscatter term at larger scales. This parameterization was previously shown to work well in zonally re-entrant channel configurations. Here, a generalization in the form of a Rossby number-dependent scaling for the strength of the backscatter is introduced to represent the emergence of a forward energy-cascade in unbalanced flows near the boundaries. We apply the parameterization to a shallow water model of a double gyre basin and provide evidence for its general applicability. In terms of mean state and variability, a low resolution model is considerably improved towards a high resolution control run at low additional computational cost.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...