ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • Wiley-Blackwell  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Acta Polymerica 47 (1996), S. 141-149 
    ISSN: 0323-7648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Combined LC-polymers possess the structural properties of both LC main chain and LC side chain polymers. Beneath this structural speciality, their broad LC-phases and their polymorphism (different smectic phases and one nematic phase as a function of temperature) make them interesting. Crucial to an understanding of them is the fact that main chain and side chain mesogens orient parallel to each other and interact cooperatively to form the LC-phase. Due to this synergism the temperature range of the LC-phase is much broader than that of the corresponding LC main chain and LC side chain polymers. This interplay of main chain and side chain mesogens allows structures to be designed with preferably nematic or smectic phases. Whenever both types of mesogens can arrange in the same height, preferably smectic phases are formed. If this is not possible, the nematic phase dominates.The incorporation of chiral groups allows cholesteric and chiral smectic C* phases to be prepared. For the latter, ferroelectric modes have been observed dielectrically. By crosslinking of combined LC-polymers, combined LC-elastomers can be prepared, in which the LC-phases are nearly unchanged. These elastomers allow a mechanical orientation of the LC-phases and, in particular, an untwisting of the helical superstructure of cholesteric and chiral smectic C* phases. In the latter case ferroelectric monodomains are obtained. The piezoeffect  -  to be expected  -  for LC-elastomers with chiral smectic C* phases was first demonstrated for this class of polymers.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2003-09-01
    Print ISSN: 0013-4686
    Electronic ISSN: 1873-3859
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Physics and Chemistry of The Earth Part B-Hydrology Oceans and Atmosphere, 25 (1). pp. 1-8.
    Publication Date: 2017-01-03
    Description: The aims of the Aegean Hydrothermal Fluxes and Biological Production project were to estimate the fluxes of fluids, chemicals, heat and bacteria from hydrothermal vents, establish the controls on venting dynamics, measure the productivity in the region of the vents and establish the effect of the vents on biodiversity of both prokaryotes and eukaryotes. This paper presents an initial synthesis of the project results. Research was done both by land-based SCUBA diving and from several vessels at a number of active sites in the near-shore coastal regions of Milos and Kos, with some additional studies at Methana, Lesbos and Santorini. Vent water composition showed very large variations. This was due to the mixing, of hydrothermal reservoir fluids, vapour condensate and seawater altered by interactions of fluid-sediment-bacteria in different proportions, in the gasohydrothermal vents. The composition ranged from nearly sea water with only slightly reduced pH, to higher or lower salinity fluids with a pH as low as 3 and with large enrichments in heavy and trace metals. Phase separation was a common feature at these shallow vents. The dry gas phase was mainly C02, but with significant amounts of H2S, CH4 and H2. These fluids commonly passed through soft sediments before venting from the seafloor and induced a convection cell of pore-water entrainment from deeper sediment layers into the water column with a consequent ‘re-charge’ down-flow of seawater into the sediment around the vent outlets. Such complex conditions may well explain the high biodiversity of Bacteria, Archaea and epifaunal species surrounding the vents. As many as 44 % of the archaeal lineages detected were found to represent novel phyla. Epifaunal diversity was particularly high with over 200 species recorded at the shallower Milos vents. These vents may form a ‘steppingstone’ for warmer water species to colonise the surrounding areas when water temperatures permit.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...