ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2019-02-01
    Description: Highlights • New high-resolution bathymetry and MCS images of the Palomares margin are presented. • Main geomorphological and tectonic features along the margin are analyzed. • Bathymetry is mainly controlled by erosive and halokinesis processes. Abstract The Palomares continental margin is located in the southeastern part of Spain. The margin main structure was formed during Miocene times, and it is currently part of the wide deformation zone characterizing the region between the Iberian and African plates, where no well-defined plate boundary occurs. The convergence between these two plates is here accommodated by several structures, including the left lateral strike–slip Palomares Fault. The region is characterized by sparse, low to moderate magnitude (Mw 〈 5.2) shallow instrumental earthquakes, although large historical events have also occurred. To understand the recent tectonic history of the margin we analyze new high-resolution multibeam bathymetry data and re-processed three multichannel seismic reflection profiles crossing the main structures. The analysis of seafloor morphology and associated subsurface structure provides new insights of the active tectonic features of the area. In contrast to other segments of the southeastern Iberian margin, the Palomares margin contains numerous large and comparatively closely spaced canyons with heads that reach near the coast. The margin relief is also characterized by the presence of three prominent igneous submarine ridges that include the Aguilas, Abubacer and Maimonides highs. Erosive processes evidenced by a number of scars, slope failures, gullies and canyon incisions shape the present-day relief of the Palomares margin. Seismic images reveal the deep structure distinguishing between Miocene structures related to the formation of the margin and currently active features, some of which may reactivate inherited structures. The structure of the margin started with an extensional phase accompanied by volcanic accretion during the Serravallian, followed by a compressional pulse that started during the Latemost Tortonian. Nowadays, tectonic activity offshore is subdued and limited to few, minor faults, in comparison with the activity recorded onshore. The deep Algero-Balearic Basin is affected by surficial processes, associated to halokinesis of Messinian evaporites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: Complex multifault earthquake ruptures involving secondary faults emphasize the necessity to characterize their seismogenic potential better and study their relationship with major faults to improve the seismic hazard assessment of a region. High-resolution geophysical data were interpreted to make a detailed characterization of the Averroes Fault and the North Averroes Faults, which are poorly known secondary right-lateral strike-slip faults located in the central part of the Alboran Sea (western Mediterranean). These faults appear to have evolved since the Pliocene as part of a distributed dextral strike-slip shear zone in response to local strain engendered by the diverging movement of the Carboneras Fault to the north, and the Yusuf and Alboran Ridge faults to the south. In addition, the architecture of these faults suggests that the Averroes Fault may eventually link with the Yusuf fault, thus leading to a higher seismogenic potential. Therefore, these secondary faults represent a hitherto unrecognized seismogenic hazard since they could produce earthquakes up to moment magnitude (Mw) 7.6. Our results highlight the importance of the role played by secondary faults in a specific kinematic framework. Their reciprocal linkage and their mechanical relationship with the main faults could lead to future complex fault ruptures. This information could improve fault source and earthquake models used in seismic and tsunami hazard assessment in this and similar regions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-01-31
    Description: Highlights • Northern Hispaniola Margin is studied with new high-resolution bathymetry and vintage seismic data. • Northern Hispaniola Deformed Belt forms an active N-verging fold-and-thrust imbricate system. • Gravity failures are frequent features in the Northern Hispaniola Margin and Bahamas Banks slope. • Oblique collision accelerates the Bahamas Carbonate Province collapse and retreat. • New observations help the assessment of tsunami hazards in the Northern Caribbean region. Abstract The northern margin of Hispaniola records the oblique collision/underthrusting of the Bahamas Carbonate Province with the island-arc. Due to the collision, northern Hispaniola has suffered several natural disasters caused by major earthquakes and tsunamis, such as the historic earthquake of 1842, the tsunami caused by earthquake-driven slumping in 1918 in the Mona Passage, the seismic crisis of 1943–1953 with five events of M 〉 7.0 or the seismic crisis of 2003 with a main shock of M6.3 and a large aftershock of M5.3. Using new swath multibeam bathymetry data and vintage single- and multi-channel seismic profiles, we have performed a regional scale analysis and interpretation of the shallow surface and active processes along the northern margin of the Dominican Republic. We have identified three morphostructural provinces: a) the Bahamas Banks, b) the Hispaniola Trench and c) the Insular Margin, which are divided into two tectonic domains, the Collision Domain and Underthrusting Domain. The southern slope of the Bahamas Carbonate Province shows a very irregular morphology produced by active erosive processes and normal dip-slip faulting, evidence of an extensional tectonic regime and margin collapse. This collapse is of major extent in the Oblique Collision Domain where there are erosive and fault escarpments with higher dip-slip fault throws. The Hispaniola Trench, is formed by the Caicos and Hispaniola basins in the underthrusting domain, and by the Santisima Trinidad and Navidad basins in the Oblique Collision Domain. They have a flat seafloor with a sedimentary filling of variable thickness consisting of horizontal or sub-horizontal turbiditic levels. The turbiditic fill mostly proceeds from the island arc through wide channels and canyons, which transports sediment from the shelf and upper slope. The Insular Margin comprises the Insular Shelf and the Insular Slope. The active processes are generated on the Insular Slope where the Northern Hispaniola Deformed Belt is developed. This Deformed Belt shows a very irregular morphology, with a WNW-ESE trending N verging imbricate thrust-and fold system. This system is the result of the adjustment of the oblique collision/underthrusting between the North American plate and the Caribbean plate. In the Oblique Underthrusting Domain the along-strike development of the imbricate system is highly variable forming salients and recesses. This variability is due to along-strike changes in the sediment thickness of the Hispaniola Trench, as well as to the variable topography of the underthrusting Bahamas Carbonate Province. In the Oblique Collision Domain, the morphology of the Insular Slope and the development of the Deformed Belt deeply change. The imbricate system is barely inferred and lies upslope. These changes are due to the active collision of Bahamas Carbonate Province with the Insular Margin where the spurs are indented against the Insular Margin. Throughout the entire area studied, gravitational instabilities have been observed, especially on the Insular Margin and to a lesser extent on the southern slope of the Bahamas Carbonate Province. These instabilities are a direct consequence of the active underthrusting/collision process. We have mapped large individual slumps north of Puerto Plata in the Oblique Underthrusting Domain and zones of major slumps in the Oblique Collision Domain. These evidences of active processes must be considered as near-field sources in future studies on the assessment of tsunami hazards in the region.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-02-08
    Description: Highlights • Along-strike variations of tectonic framework in northeastern Caribbean margin are studied. • Shallow plate boundary structure related to the slab geometry has been defined. • First-order fault systems and its associated features have been mapped along the margin. Abstract The North American (NOAM) plate converges with the Caribbean (CARIB) plate at a rate of 20.0 ± 0.4 mm/yr. towards 254 ± 1°. Plate convergence is highly oblique (20–10°), resulting in a complex crustal boundary with along-strike segmentation, strain partitioning and microplate tectonics. We study the oblique convergence of the NOAM and CARIB plates between southeastern Cuba to northern Puerto Rico using new swath multibeam bathymetry data and 2D multi-channel seismic profiles. The combined interpretation of marine geophysical data with the seismicity and geodetic data from public databases allow us to perform a regional scale analysis of the shallower structure, the seismotectonics and the slab geometry along the plate boundary. Due to differential rollback between the NOAM oceanic crust north of Puerto Rico and the relative thicker Bahamas Carbonate Province crust north of Hispaniola a slab tear is created at 68.5°W. The northern margin of Puerto Rico records the oblique high-dip subduction and rollback of the NOAM plate below the island arc. Those processes have resulted in a forearc transpressive tectonics (without strain partitioning), controlled by the Septentrional-Oriente Fault Zone (SOFZ) and the Bunce Fault Zone (BFZ). Meanwhile, in the northern margin of Hispaniola, the collision of the Bahamas Carbonate Province results in high plate coupling with strain partitioning: SOFZ and Northern Hispaniola Deformed Belt (NHDB). In the northern Haitian margin, compression is still relevant since seismicity is mostly associated with the deformation front, whereas strike slip earthquakes are hardly anecdotal. Although in Hispaniola intermediate-depth seismicity should disappear, diffuse intermediate-depth hypocenter remains evidencing the presence of remnant NOAM subducted slab below central and western Hispaniola. Results of this study improve our understanding of the active tectonics in the NE Caribbean that it is the base for future assessment studies on seismic and tsunamigenic hazard.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Highlights • We present the first unified stratigraphy of the westernmost Mediterranean. • Miocene marine basins currently onshore are integrated. • We present a kinematic model for the Alboran and Algero-Balearic basins. • We evaluate western Mediterranean geodynamic models in the framework of basin evolution. Abstract Based on more than 4500 km of new and re-processed multichannel seismic lines, high-resolution seafloor bathymetry, available well data, and basement dredge samples, we have re-evaluated the entire stratigraphy and the tectonic evolution of the Alboran and western Algerian basins. We have correlated the sediment units deposited since the beginning of the formation of the different sub-basins, and we present for the first time a coherent stratigraphy and large-scale tectonic evolution of the whole region. The results provide the information to test and refine models of the geodynamic evolution of the westernmost Mediterranean. The data analysis supports an independent evolution of the sub-basins through the latemost Oligocene and Miocene, and a common Plio-Holocene evolution. The latemost Oligocene and Miocene evolution was controlled by the evolution of the Gibraltar subduction system. The oldest sedimentary unit is restricted to the West Alboran and Malaga basins depocenter that during the latemost Oligocene and early Miocene connected to some smaller marine basins currently uplifted and located onshore on the Betics range. Later, during the middle Miocene, the Habibas and Pytheas sub-basins formed a second depocenter on the North African margin. The different sedimentary units found in both depocenters, together with their different deformation patterns, support that the West Alboran-Malaga and the Habibas-Pytheas depocenters were separated by a major tectonic boundary. The early Tortonian initial arc magmatic activity produced the formation of new areas floored by a volcanic basement by the end of the late Tortonian, when the first sedimentary units deposited in the East Alboran sub-basin, and probably during the late Tortonian-early Messinian in the South Alboran sub-basin. Extension of the back-arc setting created oceanic crust flooring the Algero Balearic Basin. The extensional formation of the westernmost Mediterranean basins ended in the latemost Miocene. The western migration of the subduction system stopped and the convergence between the African and the European tectonic plates started to dominate the tectonic evolution of the region. During the Plio-Holocene, the sub-basins did not further subside individually so that these sediments have spread out across the whole Alboran Basin. A new tectonic contractional and strike-slip fault system developed that is active nowadays. The integration of our results together with the most recent tomographic studies has been used to test and refine the existing kinematic models of the area. None of the existing models explains all our large-scale observations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-20
    Description: Highlights • We identify the largest active fault systems of the Alboran Basin. • Characterization of faults is key for accurate tsunamigenic potential estimations. • Alboran largest fault systems may generate Mw 〉 7 earthquakes. • These earthquakes have the potential to generate significant tsunami waves approaching the coast. Abstract The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-22
    Description: The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Description: Published
    Description: 106749
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Western Mediterranean ; Seismogenic potential ; Tsunamigenic potential ; Numerical modelling ; Active faults ; Active seismic data ; 04.04. Geology ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...