ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (2)
  • MINERALOGICAL SOC  (1)
  • 1
  • 2
    facet.materialart.
    Unknown
    MINERALOGICAL SOC
    In:  EPIC3Mineralogical Magazine - H: Goldschmidt Abstracts 2013, MINERALOGICAL SOC, 77(5), pp. 1266-1266, ISSN: 0026-461X
    Publication Date: 2019-07-17
    Description: In order to analyse differences in concentration, speciation and total mobility of arsenic two different locations were studied near the Helgoland Mud Area, North Sea. The first location is characterised by natural sedimentation, the second by deposited sediments dredged from the port of Hamburg. Porewater as well as sediment profiles were analysed with respect to arsenic compounds (As (III) and total As) and major redox species as total and reactive manganese and iron. The sediment samples were handled under inert atmosphere before and during extraction by water, phosphate, hydrochloric acid and aqua regia. Total element contents in porewater and leachable extracts of sediment fractions were analysed. The results show a strong redox coupling of arsenic with manganese and iron. Oxidized arsenic seems to adsorb to manganese- and iron-oxyhydroxides in surface sediments. In contrast to the solid samples, the pore water data shows a release of As (III) into porewater when manganese- and ironoxyhydroxides are reduced in the upper part of the cores. Also a remobilisation of As (V) occurs. Downward diffusing arsenic can be fixed by carbonate below the zone of manganese and iron reduction. In the anoxic parts of the sediments As (III) and As (V) are released and could be fixed at authigenic iron sulphide or arsenic sulphides formation. A sulfidic precipitation of arsenic in iron-dominated systems is limited by the occurrence of HS-. Total solid-phase contents in leachable extracts of sediment fractions of the natural area show significant higher arsenic concentrations than the core of the anthropogenic dumping area. This is due to the higher fines content of the Helgoland mud area. Higher total porewater contents of iron and arsenic in the core of the anthropogenic dumping area thus due to higher turnover rates of organic matter by iron reduction. Higher concentrations of arsenic may be due to a higher availability of iron in the dumped sediments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Quaternary Science Reviews 185 (2018): 135-152, doi:10.1016/j.quascirev.2018.02.012.
    Description: The largest coherent cold-water coral (CWC) mound province in the Atlantic Ocean exists along the Mauritanian margin, where up to 100 m high mounds extend over a distance of ∼400 km, arranged in two slope-parallel chains in 400–550 m water depth. Additionally, CWCs are present in the numerous submarine canyons with isolated coral mounds being developed on some canyon flanks. Seventy-seven Uranium-series coral ages were assessed to elucidate the timing of CWC colonisation and coral mound development along the Mauritanian margin for the last ∼120,000 years. Our results show that CWCs were present on the mounds during the Last Interglacial, though in low numbers corresponding to coral mound aggradation rates of 16 cm kyr−1. Most prolific periods for CWC growth are identified for the last glacial and deglaciation, resulting in enhanced mound aggradation (〉1000 cm kyr−1), before mound formation stagnated along the entire margin with the onset of the Holocene. Until today, the Mauritanian mounds are in a dormant state with only scarce CWC growth. In the canyons, live CWCs are abundant since the Late Holocene at least. Thus, the canyons may serve as a refuge to CWCs potentially enabling the observed modest re-colonisation pulse on the mounds along the open slope. The timing and rate of the pre-Holocene coral mound aggradation, and the cessation of mound formation varied between the individual mounds, which was likely the consequence of vertical/lateral changes in water mass structure that placed the mounds near or out of oxygen-depleted waters, respectively.
    Description: This study received funding from and contributes to the DFG-projects "Palaeo-WACOM" (HE 3412/17-1) and "Cold-water coral mound development in a tropical upwelling cell – the great wall of(f) Mauritania" (Ti 706/3-1). A. Freiwald received funding from the Hessian initiative for the development of scientific and economic excellence (LOEWE) at the Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany.
    Keywords: Lophelia pertusa ; Coral mound ; Submarine canyon ; Uranium-series dating ; Mound aggradation rate ; Last glacial ; Dissolved oxygen concentration ; South Atlantic Central Water ; Mauritanian margin
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...