ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Hydrology 149 (1993), S. 9-25 
    ISSN: 0022-1694
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Hydrology 157 (1994), S. 61-85 
    ISSN: 0022-1694
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Architecture, Civil Engineering, Surveying , Geography , Geosciences
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Molecular Cell Research 763 (1983), S. 393-407 
    ISSN: 0167-4889
    Keywords: (Rat adipose tissue) ; Glucose transporter distribution ; Insulin ; Subcellular fractionation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-06-06
    Description: Especially in the remote sensing context, thematic classification is a desired product for coral reef surveys. This study presents a novel statistical-based image classification approach, namely Partial Least Square Discriminant Analysis (PLS-DA), capable of doing so. Three classification models were built and implemented for the images while the fourth was a combination of spectra from all three images together. The classification was optimised by using pre-processing transformations (PPTs) and post-classification low-pass filtering. Despite the fact that the images were acquired under different conditions and quality, the best classification model was achieved by combining spectral training samples from three images (accuracy 0.63 for all classes). PPTs improved the classification accuracy by 5%–15% and post-classification treatments further increased the final accuracy by 10%–20%. The fourth classification model was the most accurate one, suggesting that combining spectra from differ conditions improves thematic classification. Despite some limitations, available aerial sensors already provide an opportunity to implement the described classification and mark the next investigation step. Nonetheless, the findings of this study are relevant both to the field of remote sensing in general and to the niche of coral reef spectroscopy.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-04-11
    Description: The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST). However, calibration notices issued by the United States Geological Survey (USGS) indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS) Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW) algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature) were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC) algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial variation of the extremely hot weather, a frequently-occurring phenomenon of an abnormal heat flux process in summer along the Yangtze River Basin, had been thoroughly analyzed. This successful application suggested that the IMW algorithm presented in the study could be used as an efficient method for LST retrieval from the Landsat 8 TIRS Band 10 data.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-11-24
    Description: Soil quality (SQ) assessment has numerous applications for managing sustainable soil function. Airborne imaging spectroscopy (IS) is an advanced tool for studying natural and artificial materials, in general, and soil properties, in particular. The primary goal of this research was to prove and demonstrate the ability of IS to evaluate soil properties and quality across anthropogenically induced land-use changes. This aim was fulfilled by developing and implementing a spectral soil quality index (SSQI) using IS obtained by a laboratory and field spectrometer (point scale) as well as by airborne hyperspectral imaging (local scale), in two experimental sites located in Israel and Germany. In this regard, 13 soil physical, biological, and chemical properties and their derived soil quality index (SQI) were measured. Several mathematical/statistical procedures, consisting of a series of operations, including a principal component analysis (PCA), a partial least squares-regression (PLS-R), and a partial least squares-discriminate analysis (PLS-DA), were used. Correlations between the laboratory spectral values and the calculated SQI coefficient of determination (R2) and ratio of performance to deviation (RPD) were R2 = 0.84; RPD = 2.43 and R2 = 0.78; RPD = 2.10 in the Israeli and the German study sites, respectively. The PLS-DA model that was used to develop the SSQI showed high classification accuracy in both sites (from laboratory, field, and imaging spectroscopy). The correlations between the SSQI and the SQI were R2 = 0.71 and R2 = 0.7, in the Israeli and the German study sites, respectively. It is concluded that soil quality can be effectively monitored using the spectral-spatial information provided by the IS technology. IS-based classification of soils can provide the basis for a spatially explicit and quantitative approach for monitoring SQ and function at a local scale.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2014-03-26
    Description: Land surface temperature (LST) is one of the most important variables measured by satellite remote sensing. Public domain data are available from the newly operational Landsat-8 Thermal Infrared Sensor (TIRS). This paper presents an adjustment of the split window algorithm (SWA) for TIRS that uses atmospheric transmittance and land surface emissivity (LSE) as inputs. Various alternatives for estimating these SWA inputs are reviewed, and a sensitivity analysis of the SWA to misestimating the input parameters is performed. The accuracy of the current development was assessed using simulated Modtran data. The root mean square error (RMSE) of the simulated LST was calculated as 0.93 °C. This SWA development is leading to progress in the determination of LST by Landsat-8 TIRS.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-30
    Description: The spatial extent of desertified vs. rehabilitated areas in the Mu Us Sandy Land, China, was explored. The area is characterized by complex landscape changes that were caused by different drivers, either natural or anthropogenic, interacting with each other, and resulting in multiple consequences. Two biophysical variables, NDVI, positively correlated with vegetation cover, and albedo, positively correlated with cover of exposed sands, were computed from a time series of merged NOAA-AVHRR and MODIS images (1981 to 2010). Generally, throughout the study period, NDVI increased and albedo decreased. Improved understanding of spatial and temporal dynamics of these environmental processes was achieved by using the Change Vector Analysis (CVA) technique applied to NDVI and albedo data extracted from four sets of consecutive Landsat images, several years apart. Changes were detected for each time step, as well as over the entire period (1978 to 2007). Four categories of land cover were created—vegetation, exposed sands, water bodies and wetlands. The CVA’s direction and magnitude enable detecting and quantifying finer changes compared to separate NDVI or albedo difference/ratio images and result in pixel-based maps of the change. Each of the four categories has a biophysical meaning that was validated in selected hot-spots, employing very high spatial resolution images (e.g., Ikonos). Selection of images, taking into account inter and intra annual variability of rainfall, enables differentiating between short-term conservancies (e.g., drought) and long-term alterations. NDVI and albedo, although comparable to tasseled cap’s brightness and greenness indices, have the advantage of being computed using reflectance values extracted from various Landsat platforms since the early 1970s. It is shown that, over the entire study period, the majority of the Mu Us Sandy Land area remained unchanged. Part of the area (6%), mainly in the east, was under human-induced rehabilitation processes, in terms of increasing vegetation cover. In other areas (5.1%), bare sands were found to expand to the central-north and the southwest of the area.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-08-29
    Description: Drought events cause changes in ecosystem function and structure by reducing the shrub abundance and expanding the biological soil crusts (biocrusts). This change increases the leakage of nutrient resources and water into the river streams in semi-arid areas. A common management solution for decreasing this loss of resources is to create a runoff-harvesting system (RHS). The objective of the current research is to apply geo-information techniques, including remote sensing and geographic information systems (GIS), on the watershed scale, to monitor and analyze the spatial and temporal changes in response to drought of two source-sink systems, the natural shrubland and the human-made RHSs in the semi-arid area of the northern Negev Desert, Israel. This was done by evaluating the changes in soil, vegetation and landscape cover. The spatial changes were evaluated by three spectral indices: Normalized Difference Vegetation Index (NDVI), Crust Index (CI) and landscape classification change between 2003 and 2010. In addition, we examined the effects of environmental factors on NDVI, CI and their clustering after successive drought years. The results show that vegetation cover indicates a negative ∆NDVI change due to a reduction in the abundance of woody vegetation. On the other hand, the soil cover change data indicate a positive ∆CI change due to the expansion of the biocrusts. These two trends are evidence for degradation processes in terms of resource conservation and bio-production. A considerable part of the changed area (39%) represents transitions between redistribution processes of resources, such as water, sediments, nutrients and seeds, on the watershed scale. In the pre-drought period, resource redistribution mainly occurred on the slope scale, while in the post-drought period, resource redistribution occurred on the whole watershed scale. However, the RHS management is effective in reducing leakage, since these systems are located on the slopes where the magnitude of runoff pulses is low.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...