ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-03-01
    Print ISSN: 0016-7037
    Electronic ISSN: 1872-9533
    Topics: Chemistry and Pharmacology , Geosciences
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
  • 4
    Publication Date: 2019-09-23
    Description: Mud volcanism in the Gulf of Cadiz occurs over a large area extending from the shelf to more than 3500 m water depth and is triggered by compressional stress along the European–African plate boundary, affecting a deeply faulted sedimentary sequence of locally more than 5 km thickness. The investigation of six active sites shows that mud volcano (MV) fluids, on average, are highly enriched in CH4, Li, B, and Sr and depleted in Mg, K, and Br. The purity of the fluids is largely controlled by the intensity of upward directed flow. Flow rates could be constrained by numerical modelling and vary between 〈0.05 and 15 cm yr−1. Application of δD–δ18O systematics identifies clay mineral dehydration, most likely within Mesozoic and Tertiary shales and marls, as the major source of fluids. Hence, Cl and Na in the pore fluids are mostly depleted below seawater values, following a general trend of dilution. However, deviations from this trend occur and are likely caused by the dissolution of halite in evaporitic deposits. Other secondary processes overprinting the original fluid composition may occur along the flow path, such as dissolution of anhydrite or gypsum and/or the formation of calcite and dolomite. Different sources of fluids are also indicated by variations in 87Sr/86Sr, which range from 0.7086 to 0.7099 at the different sites. Dehydration may be induced primarily by overburden and tectonic compression; however, very high concentrations of Li and B, specifically at Captain Arutyunov MV (CAMV) indicate additional leaching at temperatures above 150 °C, which could be explained by the injection of hot fluids along deep penetrating, major E–W strike–slip fault systems. This hypothesis is supported by the occurrence of generally thermogenic, but significantly CH4-enriched, light volatile hydrocarbon gases at CAMV which cannot be explained by shallow microbial methanogenesis. Li and Li/B ratios from different types of hot and cold vents are used to infer that high temperature signals seem to be preserved at various cold vent locations and indicate a closer coupling of both systems in continental margin environments than outlined in previous studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Sediments deposited on deep-sea fans are an excellent geological archive to reconstruct past changes in fluvial discharge. Here we present a reconstruction of changes in the regime of the Nile River during the Holocene obtained using bulk elemental composition, grain-size analyses and radiogenic strontium (Sr) and neodymium (Nd) isotopes from a sediment core collected on the Nile deep-sea fan. This 6-m long core was retrieved at View the MathML source water-depth and is characterized by the presence of a 5-m thick section of finely laminated sediments, which were deposited between 9.5 and 7.3 ka BP and correspond to the African Humid Period (AHP). The data show distinct changes in eolian dust inputs as well as variations in discharge of the Blue Nile and White Nile. Sedimentation was mainly controlled by changes in fluvial discharge during the Holocene, which was predominantly forced by low-latitude summer insolation and by the location of the eastern African Rain Belt. The changes in relative contribution from the Blue Nile and White Nile followed changes in low-latitude spring/autumn insolation, which highlights the role of changes in seasonality of the precipitation on the Nile River regime. The relative intensity of the Blue Nile discharge was enhanced during the early and late Holocene at times of higher spring insolation (with massive erosion and runoff during the AHP at times of high summer insolation), while it was reduced between 8 and 4 ka at times of high autumn insolation. The gradual insolation-paced changes in fluvial regime were interrupted by a short-term arid event at 8.5–7.3 ka BP (also associated with rejuvenation of bottom-water ventilation above the Nile fan), which was likely related to northern hemisphere cooling events. Another arid event at 4.5–3.7 ka BP occurred as the apex of a gradually drier phase in NE Africa and marks the end of the AHP.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-09-23
    Description: Projected increases in demand and thus increasing metal prices have brought the exploration and exploitation of marine mineral resources back into focus. The Atlantis II Deep, located in the central Red Sea between Saudi Arabia and Sudan, is one of the largest marine sulfide deposits known, with high concentrations of metals such as zinc, copper, silver and gold. However, little is known about the economic potential of marine minerals as well as the legal constraints. Our geological assessment shows that the deep is similar in grades and scale to large land-based deposits. Its economic potential is far from negligible. The total present value of possible gross revenues for the four metals zinc, copper, silver and gold ranges from 3.03 to 5.29 billion US$, depending on the assumptions made concerning future price development, mass calculation and discount rate. From a legal perspective, a general duty to cooperate in the exploration and exploitation of non-living resources located in disputed maritime areas is identified in both customary international law and in UNCLOS. It is submitted that a joint development agreement is one means of ensuring compliance with this duty in general and in the case of the Atlantis II Deep in particular.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Widespread mud volcanism across the thick (〈= 14 km) seismically active sedimentary prism of the Gulf of Cadiz is driven by tectonic activity along extensive strike-slip faults and thrusts associated with the accommodation of the Africa-Eurasia convergence and building of the Arc of Gibraltar, respectively. An investigation of eleven active sites located on the Moroccan Margin and in deeper waters across the wedge showed that light volatile hydrocarbon gases vented at the mud volcanoes (MVs) have distinct, mainly thermogenic, origins. Gases of higher and lower thermal maturities are mixed at Ginsburg and Mercator MVs on the Moroccan Margin, probably because high maturity gases that are trapped beneath evaporite deposits are transported upwards at the MVs and mixed with shallower, less mature, thermogenic gases during migration. At all other sites except for the westernmost Porto MV, delta C-13-CH4 and delta H-2-CH4 values of similar to -50 parts per thousand and -200 parts per thousand, respectively, suggest a common origin for methane; however, the ratio of CH4/(C2H6 + C3H8) varies from similar to 10 to > 7000 between sites. Mixing of shallow biogenic and deep thermogenic gases cannot account for the observed compositions which instead result mainly from extensive migration of thermogenic gases in the deeply-buried sediments, possibly associated with biodegradation of C2+ homologues and secondary methane production at Captain Arutyunov and Carlos Ribeiro MVs. At the deep-water Bonjardim, Olenin and Carlos Ribeiro MVs, generation of C2+-enriched gases is probably promoted by high heat flux anomalies which have been measured in the western area of the wedge. At Porto MV, gases are highly enriched in CH4 having delta C-13-CH4 similar to -50 parts per thousand, as at most sites, but markedly lower delta H-2-CH4 Values 〈 -250 parts per thousand, suggesting that it is not generated by thermal cracking of n-alkanes but rather that it has a deep Archaeal origin. The presence of petroleum-type hydrocarbons is consistent with a thermogenic origin, and at sites where CH4 is predominant support the suggestion that gases have experienced extensive transport during which they mobilized oil from sediments similar to 2-4 km deep. These fluids then migrate into shallower, thermally immature muds, driving their mobilization and extrusion at the seafloor. At Porto MV, the limited presence of petroleum in mud breccia sediments further supports the hypothesis of a predominantly deep microbial origin of CH4. (C) 2009 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-03-13
    Description: Highlights • We map out the 3D extent of gas hydrate stability beneath two methane seep sites. • Focused fluid flow has sustained large-scale gas hydrate instability. • The two seeps likely have the same deep fluid source, despite shallow differences. • Fault networks influenced the initiation of advective flow through the hydrate system. • Ongoing flow towards the seeps is likely sustained by networks of hydrofractures. Abstract Fluid flow through marine sediments drives a wide range of processes, from gas hydrate formation and dissociation, to seafloor methane seepage including the development of chemosynthetic ecosystems, and ocean acidification. Here, we present new seismic data that reveal the 3D nature of focused fluid flow beneath two mound structures on the seafloor offshore Costa Rica. These mounds have formed as a result of ongoing seepage of methane-rich fluids. We show the spatial impact of advective heat flow on gas hydrate stability due to the channelled ascent of warm fluids towards the seafloor. The base of gas hydrate stability (BGHS) imaged in the seismic data constrains peak heat flow values to View the MathML source∼60 mWm−2 and View the MathML source∼70 mWm−2 beneath two separate seep sites known as Mound 11 and Mound 12, respectively. The initiation of pronounced fluid flow towards these structures was likely controlled by fault networks that acted as efficient pathways for warm fluids ascending from depth. Through the gas hydrate stability zone, fluid flow has been focused through vertical conduits that we suggest developed as migrating fluids generated their own secondary permeability by fracturing strata as they forced their way upwards towards the seafloor. We show that Mound 11 and Mound 12 (about 1 km apart on the seafloor) are sustained by independent fluid flow systems through the hydrate system, and that fluid flow rates across the BGHS are probably similar beneath both mounds. 2D seismic data suggest that these two flow systems might merge at approximately 1 km depth, i.e. much deeper than the BGHS. This study provides a new level of detail and understanding of how channelled, anomalously-high fluid flow towards the seafloor influences gas hydrate stability. Thus, gas hydrate systems have good potential for quantifying the upward flow of subduction system fluids to seafloor seep sites, since the fluids have to interact with and leave their mark on the hydrate system before reaching the seafloor.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-09-23
    Description: Bathymetric and conventional multichannel seismic surveys offshore Nicaragua and Costa Rica have revealed numerous mud mounds beneath which the generally widespread BSR is not well imaged. However, many of the mounds are partially capped by patches of authigenic carbonate crusts, so it was not clear if the semitransparent seismic facies and the apparent gaps in the BSR beneath the mounds are real or due to poor normal-incidence seismic penetration through the cap rocks. To address these problems, a high-resolution seismic survey was carried out over the continental slope of the Nicaraguan Pacific margin using a deep towed multichannel seismic streamer (DTMCS) along with a sidescan sonar system (DTS) to image submarine mud mounds and the associated BSR. The proximity of the very short (39 m active length) but high-resolution 17 channel streamer to the seafloor of the deep towed system allows greatly improved lateral resolution whereas the relatively large source-receiver offset allows the undershooting of the cap rocks. For the first time our data show that the BSR in many cases continues but rises beneath the mounds. This is consistent with the advection of deep warm fluids and thus increased heat flow through the mounds. The occurrence of mud mounds seems to be controlled by the locations of faults.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...