ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (40)
  • Copernicus Publications (EGU)  (9)
  • Elsevier  (5)
Collection
Keywords
Years
  • 1
    Publication Date: 2016-08-01
    Print ISSN: 0924-7963
    Electronic ISSN: 1879-1573
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2015-05-01
    Print ISSN: 0967-0637
    Electronic ISSN: 1879-0119
    Topics: Biology , Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 99 . pp. 10-22.
    Publication Date: 2019-07-10
    Description: Highlights: • Abyssal AUV-based microstructure measurements over rough topography. • Indications for hydraulic control downstream of a sill in a Mid-Atlantic Ridge valley. • Asymmetric distribution of dissipation rate and elevated density variability. Abstract: Diapycnal mixing in the deep ocean is known to be much stronger in the vicinity of rough topography of mid-ocean ridges than above abyssal plains. In this study a horizontally profiling microstructure probe attached to an autonomous underwater vehicle (AUV) is used to infer the spatial distribution of the dissipation rate of turbulent kinetic energy (ε ) in the central valley of the Mid-Atlantic Ridge. To the authors’ knowledge, this is the first successful realization of a horizontal, deep-ocean microstructure survey. More than 22 h of horizontal, near-bottom microstructure data from the Lucky Strike segment (37 °N) are presented. The study focuses on a channel with unidirectional sill overflow. Density was found to decrease along the channel following the mean northward flow of 3 to 8 cm/s. The magnitude of the rate of turbulent kinetic energy dissipation was distributed asymmetrically relative to the position of the sill. Elevated dissipation rates were present in a segment 1-4 km downstream (north) of the sill with peak values of 1⋅10−71⋅10−7 W/kg. Large flow speeds and elevated density finestructure were observed within this segment. Lowered hydrographic measurements indicated unstable stratification in the same region. The data indicate that hydraulic control is established at least temporarily. Inside the channel at wavelengths between 1 m and 250 m the slopes of AUV-inferred horizontal temperature gradient spectra were found to be consistent with turbulence in the inertial-convective subrange. Integrated temperature gradient variance in this wavelength interval is consistent with an ε2/3 dependence. The results illustrate that deep-reaching AUVs are a useful tool to study deep ocean turbulence over complex terrain where free-falling and lowered turbulence measurements are inefficient and time-consuming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 . pp. 6369-6387.
    Publication Date: 2019-07-10
    Description: Halocarbons from oceanic sources contribute to halogens in the troposphere, and can be transported into the stratosphere where they take part in ozone depletion. This paper presents distribution and sources in the equatorial Atlantic from June and July 2011 of the four compounds bromoform (CHBr3), dibromomethane (CH2Br2), methyl iodide (CH3I) and diiodomethane (CH2I2). Enhanced biological production during the Atlantic Cold Tongue (ACT) season, indicated by phytoplankton pigment concentrations, led to elevated concentrations of CHBr3 of up to 44.7 and up to 9.2 pmol L−1 for CH2Br2 in surface water, which is comparable to other tropical upwelling systems. While both compounds correlated very well with each other in the surface water, CH2Br2 was often more elevated in greater depth than CHBr3, which showed maxima in the vicinity of the deep chlorophyll maximum. The deeper maximum of CH2Br2 indicates an additional source in comparison to CHBr3 or a slower degradation of CH2Br2. Concentrations of CH3I of up to 12.8 pmol L−1 in the surface water were measured. In contrary to expectations of a predominantly photochemical source in the tropical ocean, its distribution was mostly in agreement with biological parameters, indicating a biological source. CH2I2 was very low in the near surface water with maximum concentrations of only 3.7 pmol L−1. CH2I2 showed distinct maxima in deeper waters similar to CH2Br2. For the first time, diapycnal fluxes of the four halocarbons from the upper thermocline into and out of the mixed layer were determined. These fluxes were low in comparison to the halocarbon sea-to-air fluxes. This indicates that despite the observed maximum concentrations at depth, production in the surface mixed layer is the main oceanic source for all four compounds and one of the main driving factors of their emissions into the atmosphere in the ACT-region. The calculated production rates of the compounds in the mixed layer are 34 ± 65 pmol m−3 h−1 for CHBr3, 10 ± 12 pmol m−3 h−1 for CH2Br2, 21 ± 24 pmol m−3 h−1 for CH3I and 384 ± 318 pmol m−3 h−1 for CH2I2 determined from 13 depth profiles.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 12 . pp. 7519-7533.
    Publication Date: 2016-01-22
    Description: Upwelling is an important process, bringing gases and nutrients into the ocean mixed layer. The upwelling velocities, however, are too small to be measured directly. Here we use the surface disequilibrium of the 3He / 4He ratio measured in two coastal upwelling regions off Peru in the Pacific ocean and off Mauritania in the Atlantic ocean to calculate the regional distribution of vertical velocities. To also account for the fluxes by diapycnal mixing, microstructure-based observations of the vertical diffusivity have been performed on all four cruises analysed in this study. The upwelling velocities in the coastal regions vary between 1.1 ± 0.3 × 10−5 and 2.8 ± 1.5 × 10−5 m s−1 for all cruises. Vertical velocities are also inferred from the divergence of the wind-driven Ekman transport. In the coastal regimes, both methods agree within the error range. Further offshore, the helium-derived vertical velocity still reaches 1 × 10−5 m s−1, whereas the wind-driven upwelling from Ekman suction is smaller by up to 1 order of magnitude. One reason for this difference is ascribed to eddy-induced upwelling. Both advective and diffusive nutrient fluxes into the mixed layer are calculated based on the helium-derived vertical velocities and the vertical diffusivities. The advective part of these fluxes makes up at about 50 % of the total. The nutrient flux into the mixed layer in the coastal upwelling regimes is equivalent to a net community production (NCP) of 1.3 ± 0.3 g C m2 d−1 off Peru and 1.6–2.1 ± 0.5 g C m2 d−1 off Mauritania.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-04-21
    Description: The replenishment of consumed oxygen in the open ocean oxygen minimum zone (OMZ) off northwest Africa is accomplished by oxygen transport across and along density surfaces, i.e. diapycnal and isopycnal oxygen supply. Here the diapycnal oxygen supply is investigated using a large observational set of oxygen profiles and diapycnal mixing data from years 2008 to 2010. Diapycnal mixing is inferred from different sources: (i) a large-scale tracer release experiment, (ii) microstructure profiles, and (iii) shipboard acoustic current measurements plus density profiles. From these measurements, the average diapycnal diffusivity in the studied depth interval from 150 to 500m is estimated to be 1×10−5 m2 s−1, with lower and upper 95%confidence limits of 0.8×10−5 m2 s−1 and 1.4×10−5 m2 s−1. Diapycnal diffusivity in this depth range is predominantly caused by turbulence, and shows no significant vertical gradient. Diapycnal mixing is found to contribute substantially to the oxygen supply of the OMZ. Within the OMZ core, 1.5 μmol kg−1 yr−1 of oxygen is supplied via diapycnal mixing, contributing about one-third of the total demand. This oxygen which is supplied via diapycnal mixing originates from oxygen that has been laterally supplied within the upper CentralWater layer above the OMZ, and within the Antarctic Intermediate Water layer below the OMZ. Due to the existence of a separate shallow oxygen minimum at about 100m depth throughout most of the study area, there is no net vertical oxygen flux from the surface layer into the Central Water layer. Thus all oxygen supply of the OMZ is associated with remote pathways.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-04-21
    Description: Ocean observations carried out in the framework of the Collaborative Research Center 754 (SFB 754) "Climate-Biogeochemistry Interactions in the Tropical Ocean" are used to study (1) the structure of tropical oxygen minimum zones (OMZs), (2) the processes that contribute to the oxygen budget, and (3) long-term changes in the oxygen distribution. The OMZ of the eastern tropical North Atlantic (ETNA), located between the well-ventilated subtropical gyre and the equatorial oxygen maximum, is composed of a deep OMZ at about 400 m depth with its core region centred at about 20° W, 10° N and a shallow OMZ at about 100 m depth with lowest oxygen concentrations in proximity to the coastal upwelling region off Mauritania and Senegal. The oxygen budget of the deep OMZ is given by oxygen consumption mainly balanced by the oxygen supply due to meridional eddy fluxes (about 60%) and vertical mixing (about 20%, locally up to 30%). Advection by zonal jets is crucial for the establishment of the equatorial oxygen maximum. In the latitude range of the deep OMZ, it dominates the oxygen supply in the upper 300 to 400 m and generates the intermediate oxygen maximum between deep and shallow OMZs. Water mass ages from transient tracers indicate substantially older water masses in the core of the deep OMZ (about 120–180 years) compared to regions north and south of it. The deoxygenation of the ETNA OMZ during recent decades suggests a substantial imbalance in the oxygen budget: about 10% of the oxygen consumption during that period was not balanced by ventilation. Long-term oxygen observations show variability on interannual, decadal and multidecadal time scales that can partly be attributed to circulation changes. In comparison to the ETNA OMZ the eastern tropical South Pacific OMZ shows a similar structure including an equatorial oxygen maximum driven by zonal advection, but overall much lower oxygen concentrations approaching zero in extended regions. As the shape of the OMZs is set by ocean circulation, the widespread misrepresentation of the intermediate circulation in ocean circulation models substantially contributes to their oxygen bias, which might have significant impacts on predictions of future oxygen levels.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Ocean Science, 11 (3). pp. 455-470.
    Publication Date: 2017-12-19
    Description: A large, subsurface oxygen deficiency zone is located in the eastern tropical South Pacific Ocean (ETSP). The large-scale circulation in the eastern equatorial Pacific and off Peru in November/December 2012 shows the influence of the equatorial current system, the eastern boundary currents, and the northern reaches of the subtropical gyre. In November 2012 the Equatorial Undercurrent is centered at 250 m depth, deeper than in earlier observations. In December 2012 the equatorial water is transported southeastward near the shelf in the Peru-Chile Undercurrent with a mean transport of 1.6 Sv. In the oxygen minimum zone (OMZ) the flow is overlaid with strong eddy activity on the poleward side of the OMZ. Floats with parking depth at 400 m show fast westward flow in the mid-depth equatorial channel and sluggish flow in the OMZ. Floats with oxygen sensors clearly show the passage of eddies with oxygen anomalies. The long-term float observations in the upper ocean lead to a net community production estimate at about 18° S of up to 16.7 mmol C m−3 yr1 extrapolated to an annual rate and 7.7 mmol C m−3 yr−1 for the time period below the mixed layer. Oxygen differences between repeated ship sections are influenced by the Interdecadal Pacific Oscillation, by the phase of El Niño, by seasonal changes, and by eddies and hence have to be interpreted with care. At and south of the equator the decrease in oxygen in the upper ocean since 1976 is related to an increase in nitrate, phosphate, and in part in silicate.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: A strong El Niño developed in early 2015. Measurements from a research cruise on the R/V Sonne in October 2015 near the Equator east of the Galapagos Islands and off the shelf of Peru are used to investigate changes related to El Niño in the upper ocean in comparison with earlier cruises in this region. At the Equator at 85°30′ W, a clear temperature increase leading to lower densities in the upper 350 m had developed in October 2015, despite a concurrent salinity increase from 40 to 350 m. Lower nutrient concentrations were also present in the upper 200 m, and higher oxygen concentrations were observed between 40 and 130 m. In the equatorial current field, the Equatorial Undercurrent (EUC) east of the Galapagos Islands almost disappeared in October 2015, with a transport of only 0.02 Sv in the equatorial channel between 1° S and 1° N, and a weak current band of 0.78 Sv located between 1 and 2°30′ S. Such near-disappearances of the EUC in the eastern Pacific seem to occur only during strong El Niño events. Off the Peruvian shelf at  ∼  9° S, characteristics of upwelling were different as warm, saline, and oxygen-rich water was upwelled. At  ∼  12,  ∼  14, and  ∼  16° S, the upwelling of cold, low-salinity, and oxygen-poor water was still active at the easternmost stations of these three sections, while further west on these sections a transition to El Niño conditions appeared. Although from early 2015 the El Niño was strong, the October measurements in the eastern tropical Pacific only showed developing El Niño water mass distributions. In particular, the oxygen distribution indicated the ongoing transition from “typical” to El Niño conditions progressing southward along the Peruvian shelf.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...