ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (90)
  • Brussels: Economics and Econometrics Research Institute (EERI)
Collection
  • 1
    Publication Date: 2020-02-06
    Description: The study area is close to the boundary of three tectonic plates (Anatolian, Arabian, and African plates) and is characterized by important tectonic lineaments, which consist mainly of the Dead Sea Fault (DSF), the Karasu Fault, and the East Anatolian Fault (EAF) systems. To understand the origin of soil gas emanation and its relationships with the tectonics of the Amik Basin (Hatay), a detailed soil gas sampling was systematically performed. Together with CO2 flux measurements, 〉 220 soil gas samples were analyzed for Rn and CO2 concentrations. The distribution of soil Rn (kBq/m3), CO2 concentration (ppm), and CO2 flux (g/m2/day) in the area appears as a point source (spot) and/or diffuses (halo) anomalies along the buried faults/fractures due to crustal leaks. The results revealed that Rn and CO2 concentrations in the soil gas show anomalous values at the specific positions in the Amik Basin. The trace of these anomalous values is coincident with the N-S trending DSF. CO2 is believed to act as a carrier for Rn gas. Based on the Rn and CO2 concentrations of soil gases, at least three gas components are required to explain the observed variations. In addition to the atmospheric component, two other gas sources can be recognized. One is the deep crust component, which exhibits high Rn and CO2 concentrations, and is considered the best indicator for the surface location of fault/fracture zones in the region. The other component is a shallower gas source with high Rn concentration and low CO2 concentration. Moreover, He isotopic compositions of representative samples vary from 0.94 to 0.99 Ra, illustrating that most samples have a soil air component and may have mixed with some crustal component, without significant input of the mantle component. Based on the repeated measurements at a few sites, soil gas concentrations at the same site were observed to be higher in 2014 than in 2013, which may be associated with the activity of the DSF in 2013–2014. This suggests that soil gas variations at fault zone are closely related to the local crustal stress, and hence are suitable for monitoring fault activities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • Gases collected from dry seepages and bubbling or dissolved in springs of the ophiolitic body of Kizildag (Turkey). • Large compositional variation (H2- CH4 or N2-dominated) • Hydrogen derives from low temperature serpentinization processes • Methane mainly derives from abiotic processes • Large isotopic fractionation of methane at one site due to biological oxidation Abstract We investigated the geochemical features of the gases released from the Kizildag ophiolitic complex (Hatay, Turkey). Twenty-three samples both dissolved in hyperalkaline waters and free gases (bubbling gases and dry seeps) were collected. Samples were analysed for their chemical (He, H2, O2, N2, CH4 and CO2) and isotopic (He, δ13C-CH4, δ2H-CH4, δ2H-H2) composition including the content and C-isotopic composition of C2 to C5 alkanes in free gases. Analytical results evidence H2 production through low-temperature (〈80 °C) serpentinization processes and subsequent abiogenic CH4 production through Fischer-Tropsch-type reactions. In some sample small additions of methane either of microbial or of thermogenic origin can be hypothesized. At one of the sites (Kisecik) a clear fractionation pattern due to microbial methane oxidation leading to strongly enriched isotopic values (δ13C +15‰ and δ2H −68‰) and depletion in methane concentrations has been evidenced. At the dry gas seep of Kurtbagi methane flux measurements have been made and a preliminary output estimation of about 1000 kg per year has been obtained.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: Highlights • The Southern Hemisphere mid-latitudes are characterised by obliquity and semi-precession cycles during the Mi-1 deglaciation • The obliquity variability is attributed to polar influence and the semi-precessional variability to tropical influence • Semi-precession cycles do not appear until 23.01 Ma, corresponding to the onset of Antarctic deglaciation • The interaction between polar and tropical influence is related to the position and strength of the westerly wind belt Abstract It is well-known from geologic archives that Pleistocene and Holocene climate is characterised by cyclical variation on a wide range of timescales, and that these cycles of variation interact in complex ways. However, it is rarely possible to reconstruct sub-precessional (〈 20 kyr) climate variations for periods predating the oldest ice-core records (c. 800 ka). Here we present an investigation of orbital to potentially sub-precessional cyclicity from an annually resolved lake sediment core dated to a 100-kyr period in the earliest Miocene (23.03–22.93 Ma) and spanning a period of major Antarctic deglaciation associated with the second half of the Mi-1 event. Principal component analysis (PCA) of sediment bulk density, magnetic susceptibility (MS), and CIELAB L* and b* with a resolution of ~10 years indicates two major environmental processes governing the physical properties records, which we interpret as changes in wind strength and changes in precipitation. Spectral analysis of the principal components indicates that both processes are strongly influenced by obliquity (41 kyr). We interpret this 41-kyr cycle in wind strength and precipitation as related to the changing position and strength of the Southern Hemisphere westerly winds. Precipitation is also influenced by an 11-kyr cycle. The 11-kyr periodicity is potentially related to orbital cyclicity, representing the equatorial semi-precessional maximum insolation cycle. This semi-precession cycle has been identified in a number of records from the Pleistocene and Holocene and has recently been suggested to indicate that insolation in low-latitude regions may be an important driver of millennial-scale climate response to orbital forcing (Feretti et al., 2015). This is the first time this cycle has been identified in a mid-latitude Southern Hemisphere climate archive, as well as the first identification in pre-Pleistocene records. The 11-kyr cycle appears at around 23.01 Ma, which coincides with the initiation of a major phase of Antarctic deglaciation, and strengthens during the subsequent period of rapid ice decay. This pattern suggests that the westerly winds may have expanded north of 50°S at the height of Mi-1, excluding tropical influence from the Foulden Maar site, and subsequently contracted polewards in tandem with warming deep-sea temperatures and Antarctic deglaciation, allowing the advection of tropical waters further south.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-08
    Description: The spectacular Lusi mud eruption started in northeast Java, Indonesia, the 29th of May 2006 following a M6.3 strike slip seismic event. After the earthquake several mud pools aligned along a NE-SW direction appeared in the Sidoarjo district. The most prominent eruption site was named Lusi. Lusi is located ∼10 km to the NE of the northernmost cone of the Arjuno-Welirang volcanic complex with which it is connected by the Watukosek Fault System. In this study, we applied the HVSR method, which is a common tool used for site effect investigations as well as to infer buried structures and reconstruct sub-surface geology. The method is based on the ratio of the horizontal to vertical components of ground motion and it generally exhibits a peak corresponding to the fundamental frequency of the site. Spectral ratio results highlight a fundamental frequency band between 0.4 and 1.0 Hz in the Lusi neighborhood. We interpret these peaks as related to the velocity lithological contrast at depth between alluvial deposits and bluish grey clay. Our analysis also highlights the presence of a “depocenter”, characterized by fundamental frequency up to 0.3 Hz, which is interpreted as the subsidence caused by withdrawal of mud and fluids from depth (as also shown by the comparison of the HVSR results with gravimetry data). Moreover, in the area of the Lusi vent a broad-band frequency range is related to the Lusi conduit. In this paper, we show that detailed microtremor surveys could be used as a preliminary and fast approach to locate mud conduits with sufficient precision.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-10-05
    Description: This paper is an observational study of small-scale coherent eddies in the Labrador Sea, a region of dense water formation thought to be of considerable importance to the North Atlantic overturning circulation. Numerical studies of deep convection emphasize coherent eddies as a mechanism for the lateral transport of heat, yet their small size has hindered observational progress. A large part of this paper is therefore devoted to developing new methods for identifying and describing coherent eddies in two observational platforms, current meter moorings and satellite altimetry. Details of the current and water mass structure of individual eddy events, as they are swept past by an advecting flow, can then be extracted from the mooring data. A transition is seen during mid-1997, with long-lived boundary current eddies dominating the central Labrador Sea year-round after this time, and convectively formed eddies similar to those seen in deep convection modeling studies apparent prior to this time. The TOPEX / Poseidon altimeter covers the Labrador Sea with a loose “net” of observations, through which coherent eddies can seem to appear and disappear. By concentrating on locating and describing anomalous events in individual altimeter tracks, a portrait of the spatial and temporal variability of the underlying eddy field can be constructed. The altimeter results reveal an annual “pulsation” of energy and of coherent eddies originating during the late fall at a particular location in the boundary current, pinpointing the time and place of the boundary current-type eddy formation. The interannual variability seen at the mooring is reproduced, but the mooring site is found to be within a localized region of greatly enhanced eddy activity. Notably lacking in both the annual cycle and interannual variability is a clear relationship between the eddies or eddy energy and the intensity of wintertime cooling. These eddy observations, as well as hydrographic evidence, suggest an active role for boundary current dynamics in shaping the energetics and water mass properties of the interior region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-07-24
    Description: Highlights • The complex geodynamic structure of the area is reflected in the wide range of compositions of the emitted fluids. • High salinity waters with hydrocarbon gases and a purely crustal He component were collected from deep wells. • Hyperalkaline waters with CH4- and H2-dominated gases are found in the ophiolite complex. • Shallow meteoric groundwaters in the southern part of the basin show a prevailing atmospheric component for dissolved gases. • A significant mantle component (He and C) is found in the dissolved gases of the northeastern sites. Abstract We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of the DSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (from boreholes deeper than 1000 m) have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-02-01
    Description: Highlights • The NAO shapes interannual changes of gelatinous carnivore zooplankton abundance. • A main shift towards high abundances of gelatinous carnivores was detected ca. 2007. • Earlier abundance peaks of gelatinous carnivores were driven by spring temperature. Abstract The persistent massive blooms of gelatinous zooplankton recorded during recent decades may be indicative of marine ecosystem changes. In this study, we investigated the potential influence of the North Atlantic climate (NAO) variability on decadal abundance changes of gelatinous carnivore zooplankton in the Mondego estuary, Portugal, over the period 2003–2013. During the 11-year study, the community of gelatinous carnivores encompassed a larger diversity of hydromedusae than siphonophores; the former dominated by Obelia spp., Lizzia blondina, Clythia hemisphaerica, Liriope tetraphylla and Solmaris corona, while the latter dominated by Muggiaea atlantica. Gelatinous carnivore zooplankton displayed marked interannual variability and mounting species richness over the period examined. Their pattern of abundance shifted towards larger abundances ca. 2007 and significant phenological changes. The latter included a shift in the mean annual pattern (from unimodal to bimodal peak, prior and after 2007 respectively) and an earlier timing of the first annual peak concurrent with enhanced temperatures. These changes were concurrent with the climate-driven environmental variability mainly controlled by the NAO, which displayed larger variance after 2007 along with an enhanced upwelling activity. Structural equation modelling allowed depicting cascading effects derived from the NAO influence on regional climate and upwelling variability further shaping water temperature. Such cascading effect percolated the structure and dynamics of the community of gelatinous carnivore zooplankton in the Mondego estuary.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-05
    Description: We have determined the content of free l-amino acids and d-aspartate in the nervous tissue of three representative cephalopods: Sepia officinalis, Octopus vulgaris, and Loligo vulgaris, and the optic lobes of adult and embryo Sepia officinalis. Taurine is the most abundant amino acid in the cephalopod nervous tissue. Its content amounts to more than 50% of the total free amino acids. The other most concentrated amino acids are Glu, Ala, Asp, and GABA. High concentrations of d-aspartate were found in the nervous tissue of all cephalopods examined (7–12 μmol/g wet tissue) which represents 50–80% of the total aspartate (d + l), depending on the animal. Among the various regions of the brain of Octopus vulgaris, d-aspartate was found to be evenly distributed in the various regions of the brain. In nerve tissue of Sepia officinalis, there is no significant difference in the pattern of free l-amino acids, in particular of the d-aspartate concentration, between adults and embryos, except for GABA, Gly, His and Thr. This suggests that d-aspartate in nerve tissue of the Cephalopoda is of endogenous origin and not a product of accumulation from exogenous sources. From a comparative study of the content of d-aspartate in the nervous tissue of different animals, we found that protostomia contain a significantly higher amount than deuterostomia. Thus, d-aspartate could be a criterion to distinguish the protostomia phyla from the deuterostomia phyla.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Journal of Volcanology and Geothermal Research, 177 (1). pp. 277-287.
    Publication Date: 2021-08-12
    Description: Correlation of distal ash deposits with their proximal counterparts mainly relies on chemical and mineralogical characterization of bulk rock and matrix glasses. However, the study of juvenile fragments often reveals the heterogeneity in terms of clast shape, external surface, groundmass texture and composition. This is particularly evident in small scale eruptions, characterized by a strong variability in texture and relative abundance of juvenile fragments. This heterogeneity introduces an inherent uncertainty, that makes the compositional data alone inadequate to unequivocally characterize the tephra bed. Pyroclast characteristics, if described and quantified, can represent an additional clue for the correct identification of the tephra. The paper presents morphological, textural and compositional data on the products of an ash eruption from Middle Age activity of Vesuvius, to demonstrate the information that can be extracted from the proposed type of analysis. Juvenile fragments from five ash layers throughout the studied products were randomly hand-picked and fully characterized in terms of external morphology, particle outline parameterization, groundmass texture and glass composition. Statistical analysis of shape parameters characterized groups of fragments that can be compared with the other textural and physical parameters. The main result is that the data do not show important cross-correlation so suggesting that all of these parameters, together with accurate field data are needed for the complete fingerprinting of a tephra bed. We suggest that this approach is especially important for characterizing the products of small scale, compositionally undistinguishable, eruptions and represents the necessary step to deal with before going into more detailed compositional analyses.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-01-31
    Description: The Maltese Islands, located in the central Mediterranean Sea, are intersected by two normal fault systems associated with continental rifting to the south. Due to a lack of evidence for offshore displacement and insignificant historical seismicity, the systems are thought to be inactive and the rift-related deformation is believed to have ceased. In this study we integrate aerial, marine and onshore geological, geophysical and geochemical data from the Maltese Islands to demonstrate that the majority of faults offshore the archipelago underwent extensional to transtensional deformation during the last 20 ka. We also document an active fluid flow system responsible for degassing of CH4 and CO2. The gases migrate through carbonate bedrock and overlying sedimentary layers via focused pathways, such as faults and pipe structures, and possibly via diffuse pathways, such as fractures. Where the gases seep offshore, they form pockmarks and rise through the water column into the atmosphere. Gas migration and seepage implies that the onshore and offshore faults systems are permeable and that they were active recently and simultaneously. The latter can be explained by a transtensional system involving two right-stepping, right-lateral NW-SE trending faults, either binding a pull-apart basin between the islands of Malta and Gozo or associated with minor connecting antitethic structures. Such a configuration may be responsible for the generation or reactivation of faults onshore and offshore the Maltese Islands, and fits into the modern divergent strain-stress regime inferred from geodetic data.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...