ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Crystallochemical changes of (Pb5Ca5)(VO4)6F2 apatite under electron irradiation were examined by transmission electron microscopy. The apatite, a synthetic analog of vanadinite, was moderately stable towards a less intense 300-keV LaB6 source, while it changed rapidly in structure when exposed to the higher flux of a 200-keV field emission gun. The electron beam induced transformation of vanadinite proceeds sequentially by (i) migration and loss of fluorine, (ii) lead volatilization and conversion to 2–5-nm platelets of a glaserite-type structure, and (iii) the reduction of V5+ to V4+ with the removal of lead and calcium oxide that leads to single-crystal CaVO3 perovskite as the ultimate product. The phase transformations are interpreted based on the crystallographic relations among the CaVO3 perovskite, the (Pb5Ca5)(VO4)6F2 apatite and the glaserite-type structures, and compositional changes under electron irradiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: Protodunes emerge from a flat sand bed at the upwind margin of White Sands Dune Field, and, over several hundred meters, transition into fully developed dunes. Here, we investigate spatial and temporal changes in topography across this transition from 2007 to 2016 using lidar-derived topography, structure-from-motion-derived topography, and RTK GPS. We characterize the deposits present in 2015 using ground penetrating radar. Symmetric protodunes give way downwind to an asymmetric protodune at the transition to slipface development. Between 2007 and 2016, protodune amplitude increased from 0.2 m to 4.0 m, migration rate increased from 3.2 m/yr to 6.1 m/yr, and wavelength increased from 76 m to 122 m. Ground-penetrating radar surveys show strata between flat and 15° make up the stratigraphic architecture of the protodunes. Strata increase in steepness commensurate with an increase in amplitude. Decimeter accumulations of low-angle strata associated with initial protodune stages give way to 4 m of accumulation composed of sets up to 1 m thick prior to slipface development. Topsets present in the thickest sets indicate near critical angles of bedform climb. Growth and slipface development occur by aerodynamic sand trapping and protodune merging. Changes in asymmetry erase initial slipfaces prior to permanent slipface development, after which efficient sand trapping and scour promotes the transition to a dune across 20 m in 5 years. Protodune stratification has hallmarks of sandsheet stratification and can be appreciated within the greater suite of processes that create low-angle eolian stratification found in modern and ancient environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...