ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics (AIP)  (16)
  • Elsevier  (9)
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 2551-2551 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1299-1309 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The subgrid scales are modeled dynamically in a large-eddy simulation of transitional boundary-layer flow along a cylinder at a Mach number of 4.5. The behavior of the dynamic-model coefficients, which is determined from local information in the resolved field, is investigated through both an a priori test with direct numerical simulation data for the same case and a complete large-eddy simulation. Both contractions proposed by Germano et al. and Lilly are used for the unique determination of the coefficients of the dynamic model, and their results are compared and assessed. The behavior, as well as the energy cascade of the subgrid-scale field structure, is investigated at various stages of the transition process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 9 (1997), S. 2740-2748 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An a priori study of the subgrid-scale (SGS) stresses and dissipation in two nonequilibrium, wall-bounded flows is carried out. The velocity fields were computed by direct simulations of two- and three-dimensional boundary layers obtained, respectively, by a sudden change in the Reynolds number and by an impulsive motion in the spanwise direction of the lower wall of a plane channel in fully developed turbulent flow conditions. Several realizations of the transient period of the flow were examined. The SGS stresses react to the imposition of the secondary shear more rapidly than the large-scale ones, and return to equilibrium before the resolved stresses do. In general, the subgrid scales are less sensitive than the large ones to the near-wall and nonequilibrium effects. Scale-similar and dynamic models appear well-suited to reproduce the correlation between resolved Reynolds stress production and events with significant production of SGS energy. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 5 (1993), S. 1484-1490 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The dynamic subgrid-scale eddy viscosity model has been used in the large-eddy simulation of the turbulent flow in a plane channel for Reynolds numbers based on friction velocity and channel half-width ranging between 200 and 2000, a range including values significantly higher than in previous simulations. The computed wall stress, mean velocity, and Reynolds stress profiles compare very well with experimental and direct simulation data. Comparison of higher moments is also satisfactory. Although the grid in the near-wall region is fairly coarse, the results are quite accurate: the turbulent kinetic energy peaks at y+(approximately-equal-to)12, and the near-wall behavior of the resolved stresses is captured accurately. The model coefficient is o(10−3) in the buffer layer and beyond, where the cutoff wave numbers are in the decaying region of the spectra; in the near-wall region the cutoff wave numbers are nearer the energy-containing range, and the resolved turbulent stresses become a constant fraction of the resolved stresses. This feature is responsible for the correct near-wall behavior of the model coefficient. In the near-wall region the eddy viscosity is reduced to account for the energy transfer from small to large scales that may occur locally.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1760-1765 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One major drawback of the eddy viscosity subgrid-scale stress models used in large-eddy simulations is their inability to represent correctly with a single universal constant different turbulent fields in rotating or sheared flows, near solid walls, or in transitional regimes. In the present work a new eddy viscosity model is presented which alleviates many of these drawbacks. The model coefficient is computed dynamically as the calculation progresses rather than input a priori. The model is based on an algebraic identity between the subgrid-scale stresses at two different filtered levels and the resolved turbulent stresses. The subgrid-scale stresses obtained using the proposed model vanish in laminar flow and at a solid boundary, and have the correct asymptotic behavior in the near-wall region of a turbulent boundary layer. The results of large-eddy simulations of transitional and turbulent channel flow that use the proposed model are in good agreement with the direct simulation data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 609-611 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of large eddy simulation (LES) of the Navier–Stokes equations are used to evaluate the validity of Taylor's hypothesis of frozen turbulence, which states that the time derivative of some instantaneous quantity is proportional to its derivative in the streamwise direction, for incompressible plane channel flow. Time and space derivatives in the streamwise direction of the velocity components are, in fact, found to be well correlated. Root-mean-square fluctuations of the terms in Taylor's hypothesis also support the validity of this hypothesis above the buffer layer. The good agreement between LES and experimental results indicates that errors in the evaluation of derivatives in the streamwise direction are due mostly to insufficient resolution.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 1 (1989), S. 764-766 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Turbulence-producing events in turbulent channel flow were found to be predominantly associated with asymmetric vortical structures rather than pairs of counter-rotating structures. An asymmetry-preserving averaging scheme was devised, allowing a picture of the "average'' structure that more closely resembles the instantaneous one to be obtained. In addition, these structures were found to persist for long distances with little change while convecting downstream.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 8 (1996), S. 1978-1980 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The viability of utilizing experimental time series for the investigation of SGS physics is investigated by filtering temporal and spatial data from a DNS of fully developed turbulent channel flow. It is found that temporal filtering of single-point data corresponds to filtering in the streamwise direction, if an appropriate convection velocity is introduced. One-dimensional filtering, however, is not effective at separating the large and small scales in the near-wall region due to the strong flow anisotropy. Two-dimensional filtering in planes parallel to the wall is equivalent to three-dimensional filtering above y+(approximately-equal-to)10. Away from the wall, for y+(approximately-greater-than)50, where the turbulent eddies tend towards isotropy, streamwise (or temporal) filtering is adequate. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 7 (1995), S. 839-848 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Most applications of the dynamic subgrid-scale stress model use volume- or planar-averaging to avoid ill-conditioning of the model coefficient, which may result in numerical instabilities. Furthermore, a spatially-varying coefficient is mathematically inconsistent with the original derivation of the model. A localization procedure is proposed here that removes the mathematical inconsistency to any desired order of accuracy in time. This model is applied to the simulation of rotating channel flow, and results in improved prediction of the turbulence statistics. The model coefficient vanishes in regions of quiescent flow, reproducing accurately the intermittent character of the flow on the stable side of the channel. Large-scale longitudinal vortices can be identified, consistent with the observation from experiments and direct simulations. The effect of the unresolved scales on higher-order statistics is also discussed. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 3 (1991), S. 1766-1771 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Most subgrid-scale (SGS) models for large-eddy simulations (LES) are absolutely dissipative (that is, they remove energy from the large scales at each point in the physical space). The actual SGS stresses, however, may transfer energy to the large scales (backscatter) at a given location. Recent work on the LES of transitional flows [Piomelli et al., Phys. Fluids A 2, 257 (1990)] has shown that failure to account for this phenomenon can cause inaccurate prediction of the growth of the perturbations. Direct numerical simulations of transitional and turbulent channel flow and compressible isotropic turbulence are used to study the backscatter phenomenon. In all flows considered roughly 50% of the grid points were experiencing backscatter when a Fourier cutoff filter was used. The backscatter fraction was less with a Gaussian filter, and intermediate with a box filter in physical space. Moreover, the backscatter and forward scatter contributions to the SGS dissipation were comparable, and each was often much larger than the total SGS dissipation. The SGS dissipation (normalized by total dissipation) increased with filter width almost independently of filter type. The amount of backscatter showed an increasing trend with Reynolds number. In the near-wall region of the channel, events characterized by strong Reynolds shear stress correlated fairly well with areas of high SGS dissipation (both forward and backward). In compressible isotropic turbulence similar results were obtained, independent of fluctuation Mach number.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...