ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • Ecological Society of America / Wiley  (1)
  • Elsevier  (1)
  • 1
    facet.materialart.
    Unknown
    Elsevier
    In:  Deep Sea Research Part I: Oceanographic Research Papers, 44 (8). pp. 1377-1403.
    Publication Date: 2016-09-30
    Description: Particle flux data have been collated from the literature representing most areas of the open ocean to determine regional trends in deep water flux and its seasonal variability. Organic carbon flux data normalised to a depth of 2000 m exhibits a range of an order of magnitude in areas outside the polar domains (0.38 to 4.2 g/m2/y). In polar regions the range is wider (0.01–5.9 g/m2/y). Latitudinal trends are not apparent for most components of the flux although calcite flux exhibits a poleward decrease. Limited data from polar regions show fluxes of opaline silica not significantly higher than elsewhere. The variability of flux over annual cycles was calculated and expressed as a Flux Stability Index (FSI) and the relationship between this and vertical flux of material examined. Somewhat surprisingly there is no significant relationship between FSI and fluxes of dry mass, organic carbon, inorganic carbon or opaline silica. At each site, net annual primary production was determined using published satellite derived estimates. There is a negative but weak relationship between FSI and the proportion of primary production exported to 2000 m (e2000 ratio). The most variable of the non-polar environments export to 2000 m about twice as much of the primary production as the most stable ones. Polar environments have very low e2000 ratios with no apparent relationship to FSI. At primary production levels below 200 g C/m2/y there is a positive correlation between production and organic carbon flux at 2000 m but above this level, flux remains constant at about 3.5g C/m2/y. A curve derived to describe this relationship was applied to estimates of annual primary production in each of 34 of the open ocean biogeochemical provinces proposed by Longhurst et al. (1995). Globally, open ocean flux of organic carbon at 2000 m is 0.34 Gt/yr which is 1% of the total net primary production in these regions. This flux is nearly equally divided between the Atlantic, Pacific and Southern Oceans. The Indian and Arctic oceans between them only contribute 5% to the total. The eight planktonic climatological categories proposed by Longhurst (1995) provide a most useful means of examining the data on flux and its variability. A characteristic level of FSI was found in each category with highest levels in the tropics and lowest levels in the Antarctic. There is also a characteristic level of export ratio in each category with the highest in monsoonal environments (1.7%) and the lowest in Antarctica (0.1%)
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: The contribution of carbonate-producing benthic organisms to the global marine carbon budget has been overlooked, the prevailing view being that calcium carbonate (CaCO3) is predominantly produced by marine plankton. Here, we provide the first estimation of the global contribution of echinoderms to the marine carbon cycle, based on organism-level measurements from species of the five echinoderm classes. Echinoderms global CaCO3 contribution amounts to ~0.861 Pg CaCO3 yr-1 (0.102 Pg C yr-1 of inorganic carbon) as a production rate, and ~2.11 Pg CaCO3 (0.25 Pg C of inorganic carbon) as a standing stock globally. Echinoderm inorganic carbon production (0.102 Pg C yr-1) is less than the global pelagic production (0.4-1.8 Pg C yr-1), and similar to the estimates for carbonate shelves globally (0.02-0.12 Pg C yr-1). Echinoderm CaCO3 production per unit area, is ~27.01 g CaCO3 m-2 yr-1 (3.24 g C m-2 yr-1 as inorganic carbon) on a global scale for all areas, with a standing stock of ~63.34 g CaCO3 m-2 (7.60 g C m-2 as inorganic carbon), and ~7.97 g C m-2 as organic carbon. The shelf production is 77.91 g CaCO3 m-2 yr-1 (9.35 g C m-2 yr-1 as inorganic carbon) in contrast to 2.05 g CaCO3 m-2 yr-1 (0.24 g C m-2 yr-1 as inorganic carbon) for the slope on a global scale. The biogeography of the CaCO3 standing stocks of echinoderms showed strong latitudinal variability. Roughly 80% of the global CaCO3 production from echinoderms occurs between 0 and 800 meters. The shelf and upper slope contribute the most. We provide a global distribution of echinoderm populations in the context of global calcite saturation horizons, since undersaturated waters with respect to mineral phases are surfacing. This shallowing is a direct consequence of ocean acidification, and in some places it may reach the shelf and upper slope permanently. These organism-level data contribute substantially to the assessment of global carbonate inventories, which at present are poorly estimated. Additionally, it is desirable to include these benthic compartments in coupled global biogeochemical models representing the “biological pump”, since at present all efforts have focused on pelagic processes, dominated by coccolithophores.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...