ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    Ecological Society of America
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2683-2688, doi:10.1890/08-2014.1.
    Description: By definition, ecological systems at a stable equilibrium eventually return to the equilibrium point following a small perturbation. In the short term, however, perturbations can grow. Equilibria that exhibit transient growth following perturbation are said to be reactive. In this report, we present a statistical method for detecting reactivity from multivariate time series. The test is simple and computationally tractable, and it can be applied to short time series. Its main limitation is that it is based on a model of population dynamics that is linear on a logarithmic scale. Our results suggest that the test is robust when the dynamics are nonlinear on the log scale but that it may incorrectly classify an equilibrium as reactive when the reactivity is close to zero.
    Description: This research was supported by a grant (DEB-0515639) from the U.S. National Science Foundation.
    Keywords: Multivariate time series ; Resilience ; Stability ; Transient dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2013. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 94 (2013): 761–763, doi:10.1890/12-0047.1.
    Description: The species–area relationship summarizes the relationship between the average number of species in a region and its area. This relationship provides a basis for predicting the loss of species associated with loss of habitat (e.g., Pimm and Raven 2000). The approach involves two steps. First, as discussed in more detail below, the species–area relationship is used to predict the number of species that are endemic to the habitat at risk based on its area. Second, these endemic species are assumed to become extinct should this habitat be lost. In a controversial paper, He and Hubbell (2011) argued that the way in which the species–area relationship is used to predict the number of endemic species is incorrect when individual organisms are aggregated in space and argued that this explains a discrepancy between predicted and observed extinction rates associated with habitat loss. The controversy surrounding the paper focused primarily on the second part of their argument (Brooks 2011, Evans et al. 2011, He and Hubbell 2012, Pereira et al. 2012, Thomas and Williamson 2012). Here, we focus on the details underlying the first part.
    Description: U. Roll is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities. L. Stone is supported by the Israeli Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2015. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 96 (2015): 2027-2028, doi:10.1890/14-1900.1.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Dykman, L. N., Beaulieu, S. E., Mills, S. W., Solow, A. R., & Mullineaux, L. S. Functional traits provide new insight into recovery and succession at deep-sea hydrothermal vents. Ecology, 102(8), (2021): e03418, https://doi.org/10.1002/ecy.3418.
    Description: Investigation of communities in extreme environments with unique conditions has the potential to broaden or challenge existing theory as to how biological communities assemble and change through succession. Deep-sea hydrothermal vent ecosystems have strong, parallel gradients of nutrients and environmental stress, and present unusual conditions in early succession, in that both nutrient availability and stressors are high. We analyzed the succession of the invertebrate community at 9°50′ N on the East Pacific Rise for 11 yr following an eruption in 2006 in order to test successional theories developed in other ecosystems. We focused on functional traits including body size, external protection, provision of habitat (foundation species), and trophic mode to understand how the unique nutritional and stress conditions influence community composition. In contrast to established theory, large, fast-growing, structure-forming organisms colonized rapidly at vents, while small, asexually reproducing organisms were not abundant until later in succession. Species in early succession had high external protection, as expected in the harsh thermal and chemical conditions after the eruption. Changes in traits related to feeding ecology and dispersal potential over succession agreed with expectations from other ecosystems. We also tracked functional diversity metrics over time to see how they compared to species diversity. While species diversity peaked at 8 yr post-eruption, functional diversity was continuing to increase at 11 yr. Our results indicate that deep-sea hydrothermal vents have distinct successional dynamics due to the high stress and high nutrient conditions in early succession. These findings highlight the importance of extending theory to new systems and considering function to allow comparison between ecosystems with different species and environmental conditions.
    Description: Funding for L. Dykman, L. Mullineaux, and S. Beaulieu was provided by NSF OCE-1829773. The Synthesis Centre of the German Centre for Integrative Biodiversity Research (sDiv) funded the sFDvent working group and database.
    Keywords: Benthic invertebrates ; Disturbance ; Functional traits ; Hydrothermal vents ; Recovery ; Succession
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...