ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © Ecological Society of America, 2008. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 6 (2008): 255–263, doi:10.1890/070153.
    Description: We identify a continental-scale network of sites to evaluate how two aspects of climate change – sea-level rise and intensification of windstorms – will influence the structure, function, and capacity of coastal and inland forest ecosystems to deliver ecosystem services (eg carbon sequestration, storm protection, pollution control, habitat support, food). The network consists of coastal wetland and inland forest sites across the US and is representative of continental-level gradients of precipitation, temperature, vegetation, frequency of occurrence of major windstorms, value of insured properties, tidal range, watershed land use, and sediment availability. The network would provide real-time measurements of the characteristics of sea-level rise and windstorm events and would allow an assessment of the responses of wetlands, streams, and inland forests at spatial and temporal scales associated with sustainability of ecosystem services. We illustrate the potential of this approach with examples of hypotheses that could be tested across the network.
    Description: The research that led to this paper was supported in part by grants to CSH (NSF BCS-0709685, DEB-0614282, OCE-0423565, GA Sea Grant NA080AR4170724), AEL (NSF BIR-8811902, DEB-9411973, DEB-9705814, DEB-0080538, DEB- 0218039), MA (NSF OCE-0620959, GA Sea Grant NA08OAR4170724, GA Coastal Management Program NA07NOS4190182), APC (NSF DEB-0218039), and SJVB (USDA CSREES PR00NRI001, McIntire Stennis PR014).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2009. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 90 (2009): 2535-2546, doi:10.1890/08-1051.1.
    Description: We compared processing and fate of dissolved NO3− in two New England salt marsh ecosystems, one receiving natural flood tide concentrations of 1–4 μmol NO3−/L and the other receiving experimentally fertilized flood tides containing 70–100 μmol NO3−/L. We conducted simultaneous 15NO3− (isotope) tracer additions from 23 to 28 July 2005 in the reference (8.4 ha) and fertilized (12.4 ha) systems to compare N dynamics and fate. Two full tidal cycles were intensively studied during the paired tracer additions. Resulting mass balances showed that essentially 100% (0.48–0.61 mol NO3-N·ha−1·h−1) of incoming NO3− was assimilated, dissimilated, sorbed, or sedimented (processed) within a few hours in the reference system when NO3− concentrations were 1.3–1.8 μmol/L. In contrast, only 50–60% of incoming NO3− was processed in the fertilized system when NO3− concentrations were 84–96 μmol/L; the remainder was exported in ebb tidewater. Gross NO3− processing was 40 times higher in the fertilized system at 19.34–24.67 mol NO3-N·ha−1·h−1. Dissimilatory nitrate reduction to ammonium was evident in both systems during the first 48 h of the tracer additions but 〈1% of incoming 15NO3− was exported as 15NH4+. Nitrification rates calculated by 15NO3− dilution were 6.05 and 4.46 mol·ha−1·h−1 in the fertilized system but could not be accurately calculated in the reference system due to rapid (〈4 h) NO3− turnover. Over the five-day paired tracer addition, sediments sequestered a small fraction of incoming NO3−, although the efficiency of sequestration was 3.8% in the reference system and 0.7% in the fertilized system. Gross sediment N sequestration rates were similar at 13.5 and 12.6 mol·ha−1·d−1, respectively. Macrophyte NO3− uptake efficiency, based on tracer incorporation in aboveground tissues, was considerably higher in the reference system (16.8%) than the fertilized system (2.6%), although bulk uptake of NO3− by plants was lower in the reference system (1.75 mol NO3−·ha−1·d−1) than the fertilized system (10 mol NO3−·ha−1·d−1). Nitrogen processing efficiency decreased with NO3− load in all pools, suggesting that the nutrient processing capacity of the marsh ecosystem was exceeded in the fertilized marsh.
    Description: This work was funded by National Science Foundation Grant DEB 0213767 and OCE 9726921.
    Keywords: Biogeochemistry ; Eutrophication ; New England ; USA ; Nitrogen processing efficiency ; Salt marsh ; Stable isotopes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Ecological Society of America, 2008. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Frontiers in Ecology and the Environment 6 (2008): 264–272, doi:10.1890/070147.
    Description: Urbanization, an important driver of climate change and pollution, alters both biotic and abiotic ecosystem properties within, surrounding, and even at great distances from urban areas. As a result, research challenges and environmental problems must be tackled at local, regional, and global scales. Ecosystem responses to land change are complex and interacting, occurring on all spatial and temporal scales as a consequence of connectivity of resources, energy, and information among social, physical, and biological systems. We propose six hypotheses about local to continental effects of urbanization and pollution, and an operational research approach to test them. This approach focuses on analysis of “megapolitan” areas that have emerged across North America, but also includes diverse wildland-to-urban gradients and spatially continuous coverage of land change. Concerted and coordinated monitoring of land change and accompanying ecosystem responses, coupled with simulation models, will permit robust forecasts of how land change and human settlement patterns will alter ecosystem services and resource utilization across the North American continent. This, in turn, can be applied globally.
    Description: We thank the NSF LTER program for its support.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...