ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-05
    Description: Yedoma, a suite of syngenetically frozen silty ice- and organic-rich deposits with large ice wedges that accumulated during the late Pleistocene, is vulnerable to thermal degradation and erosion because of the extremely high ice contents. This degradation can result in significant surface subsidence and retreat of coastal bluffs and riverbanks with large consequences to landscape evolution, infrastructure damage, and water quality. We used remote sensing and field observations to assess patterns and rates of riverbank erosion at a 35-m-high active yedoma bluff along the Itkillik River in northern Alaska. The total volumetric ground-ice content—including wedge, segregated, and pore ice—was estimated to be ~ 86%. The process of riverbank erosion and stabilization include three main stages typical of the areas with ice-rich permafrost: (1) thermal erosion combined with thermal denudation, (2) thermal denudation, and (3) slope stabilization. Active riverbank erosion at the main study site started in July 1995, when the Itkillik River changed its channel. The total retreat of the riverbank during 1995–2010 within different segments of the bluff varied from 180 to 280 m; the average retreat rate for the most actively eroded part of the riverbank was almost 19 m/y. From August 2007 to August 2011, the total retreat varied from 10 to almost 100 m. The average retreat rate for the whole 680-m-long bluff was 11 m/y. For the most actively eroded central part of the bluff (150 m long) it was 20 m/y, ranging from 16 to 24 m/y. More than 180,000 m3 of ground ice and organic-rich frozen soil, or almost 70,000 metric tons (t) of soil solids including 880 t of organic carbon, were transported to the river from the retreating bank annually. This study reports the highest long-term rates of riverbank erosion ever observed in permafrost regions of Eurasia and North America.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-09-14
    Description: Permafrost is a distinct feature of the terrestrial Arctic and is vulnerable to climate warming. Permafrost degrades in different ways, including deepening of a seasonally unfrozen surface and localized but rapid development of deep thaw features. Pleistocene ice-rich permafrost with syngenetic ice-wedges, termed Yedoma deposits, are widespread in Siberia, Alaska, and Yukon, Canada and may be especially prone to rapid-thaw processes. Freeze-locked organic matter in such deposits can be re-mobilized on short time-scales and contribute to a carbon cycle climate feedback. Here we synthesize the characteristics and vulnerability of Yedoma deposits by synthesizing studies on the Yedoma origin and the associated organic carbon pool. We suggest that Yedoma deposits accumulated under periglacial weathering, transport, and deposition dynamics in non-glaciated regions during the late Pleistocene until the beginning of late glacial warming. The deposits formed due to a combination of aeolian, colluvial, nival, and alluvial deposition and simultaneous ground ice accumulation. We found up to 130 gigatons organic carbon in Yedoma, parts of which are well-preserved and available for fast decomposition after thaw. Based on incubation experiments, up to 10% of the Yedoma carbon is considered especially decomposable and may be released upon thaw. The substantial amount of ground ice in Yedoma makes it highly vulnerable to disturbances such as thermokarst and thermo-erosion processes. Mobilization of permafrost carbon is expected to increase under future climate warming. Our synthesis results underline the need of accounting for Yedoma carbon stocks in next generation Earth-System-Models for a more complete representation of the permafrost-carbon feedback.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-08-12
    Description: The changing climate in the Arctic has a profound impact on permafrost coasts, which are subject to intensified thermokarst formation and erosion. Consequently, terrestrial organic matter (OM) is mobilized and transported into the nearshore zone. Yet, little is known about the fate of mobilized OM before and after entering the ocean. In this study we investigated a retrogressive thaw slump (RTS) on Qikiqtaruk - Herschel Island (Yukon coast, Canada). The RTS was classified into an undisturbed, a disturbed (thermokarst-affected) and a nearshore zone and sampled systematically along transects. Samples were analyzed for total and dissolved organic carbon and nitrogen (TOC, DOC, TN, DN), stable carbon isotopes (δ13C-TOC, δ13C-DOC), and dissolved inorganic nitrogen (DIN), which were compared between the zones. C/N-ratios, δ13C signatures, and ammonium (NH4-N) concentrations were used as indicators for OM degradation along with biomarkers (n-alkanes, n-fatty acids, n-alcohols). Our results show that OM significantly decreases after disturbance with a TOC and DOC loss of 77 and 55% and a TN and DN loss of 53 and 48%, respectively. C/N-ratios decrease significantly, whereas NH4-N concentrations slightly increase in freshly thawed material. In the nearshore zone, OM contents are comparable to the disturbed zone. We suggest that the strong decrease in OM is caused by initial dilution with melted massive ice and immediate offshore transport via the thaw stream. In the mudpool and thaw stream, OM is subject to degradation, whereas in the slump floor the nitrogen decrease is caused by recolonizing vegetation. Within the nearshore zone of the ocean, heavier portions of OM are directly buried in marine sediments close to shore. We conclude that RTS have profound impacts on coastal environments in the Arctic. They mobilize nutrients from permafrost, substantially decrease OM contents and provide fresh water and nutrients at a point source.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...