ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: 〈p〉A versatile method for the design of colloidal crystals involves the use of DNA as a particle-directing ligand. With such systems, DNA-nanoparticle conjugates are considered programmable atom equivalents (PAEs), and design rules have been devised to engineer crystallization outcomes. This work shows that when reduced in size and DNA grafting density, PAEs behave as electron equivalents (EEs), roaming through and stabilizing the lattices defined by larger PAEs, as electrons do in metals in the classical picture. This discovery defines a new property of colloidal crystals—metallicity—that is characterized by the extent of EE delocalization and diffusion. As the number of strands increases or the temperature decreases, the EEs localize, which is structurally reminiscent of a metal-insulator transition. Colloidal crystal metallicity, therefore, provides new routes to metallic, intermetallic, and compound phases.〈/p〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1970-01-01
    Print ISSN: 0373-0514
    Electronic ISSN: 1961-9502
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-05-01
    Description: Context. Since 1998, a planet-search around main sequence stars within 50 pc in the southern hemisphere has been underway with the CORALIE spectrograph at La Silla Observatory. Aims. With an observing time span of more than 20 yr, the CORALIE survey is able to detect long-term trends in data with masses and separations large enough to select ideal targets for direct imaging. Detecting these giant companion candidates will allow us to start bridging the gap between radial-velocity-detected exoplanets and directly imaged planets and brown dwarfs. Methods. Long-term precise Doppler measurements with the CORALIE spectrograph reveal radial-velocity signatures of massive planetary companions and brown dwarfs on long-period orbits. Results. In this paper, we report the discovery of new companions orbiting HD 181234, HD 13724, HD 25015, HD 92987 and HD 50499. We also report updated orbital parameters for HD 50499b, HD 92788b and HD 98649b. In addition, we confirm the recent detection of HD 92788c. The newly reported companions span a period range of 15.6–40.4 yr and a mass domain of 2.93–26.77 MJup, the latter of which straddles the nominal boundary between planets and brown dwarfs. Conclusions. We report the detection of five new companions and updated parameters of four known extrasolar planets. We identify at least some of these companions to be promising candidates for imaging and further characterisation.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-01
    Description: We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 〈 z 〈 3.5 with a median mass of log(M⋆∕M⊙) = 9.6 and a median star formation rate (SFR) of 7.5 M⊙ yr−1. We find that 25% of these low mass/low SFR galaxies are rotation-dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation-dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence (higher specific star formation rate). We also investigate the evolution of the intrinsic velocity dispersion, σ0, as a function of the redshift, z, and stellar mass, M⋆, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z − σ0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆∕M⊙) 〉 10). We derive a M⋆ − σ0 relation, using the Tully–Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 〈 z 〈 3.5 appear to follow this relation, except at higher redshift (z 〉 2), where we observe higher velocity dispersions for low masses (log(M⋆∕M⊙) ~ 9.6) and lower velocity dispersions for high masses (log(M⋆∕M⊙) ~ 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-10-28
    Description: We compare the molecular and ionized gas kinematics of two strongly lensed galaxies at z ∼ 1 that lie on the main sequence at this redshift. The observations were made with ALMA and MUSE, respectively. We derive the CO and [O II] rotation curves and dispersion profiles of these two galaxies. We find a difference between the observed molecular and ionized gas rotation curves for one of the two galaxies, the Cosmic Snake, for which we obtain a spatial resolution of a few hundred parsec along the major axis. The rotation curve of the molecular gas is steeper than the rotation curve of the ionized gas. In the second galaxy, A521, the molecular and ionized gas rotation curves are consistent, but the spatial resolution is only a few kiloparsec on the major axis. Using simulations, we investigate the effect of the thickness of the gas disk and effective radius on the observed rotation curves and find that a more extended and thicker disk smoothens the curve. We also find that the presence of a strongly inclined (〉 70°) thick disk (〉 1 kpc) can smoothen the rotation curve because it degrades the spatial resolution along the line of sight. By building a model using a stellar disk and two gas disks, we reproduce the rotation curves of the Cosmic Snake with a molecular gas disk that is more massive and more radially and vertically concentrated than the ionized gas disk. Finally, we also obtain an intrinsic velocity dispersion in the Cosmic Snake of 18.5 ± 7 km s−1 and 19.5 ± 6 km s−1 for the molecular and ionized gas, respectively, which is consistent with a molecular disk with a smaller and thinner disk. For A521, the intrinsic velocity dispersion values are 11 ± 8 km s−1 and 54 ± 11 km s−1, with a higher value for the ionized gas. This could indicate that the ionized gas disk is thicker and more turbulent in this galaxy. These results highlight the diversity of the kinematics of galaxies at z ∼ 1 and the different spatial distribution of the molecular and ionized gas disks. It suggests the presence of thick ionized gas disks at this epoch and that the formation of the molecular gas is limited to the midplane and center of the galaxy in some objects.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-11-01
    Description: Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...