ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-03-09
    Description: The Weddell Gyre (WG) is one of the main oceanographic features of the Southern Ocean south of the Antarctic Circumpolar Current which plays an influential role in global ocean circulation as well as gas exchange with the atmosphere. We review the state‐of‐the art knowledge concerning the WG from an interdisciplinary perspective, uncovering critical aspects needed to understand this system's role in shaping the future evolution of oceanic heat and carbon uptake over the next decades. The main limitations in our knowledge are related to the conditions in this extreme and remote environment, where the polar night, very low air temperatures, and presence of sea ice year‐round hamper field and remotely sensed measurements. We highlight the importance of winter and under‐ice conditions in the southern WG, the role that new technology will play to overcome present‐day sampling limitations, the importance of the WG connectivity to the low‐latitude oceans and atmosphere, and the expected intensification of the WG circulation as the westerly winds intensify. Greater international cooperation is needed to define key sampling locations that can be visited by any research vessel in the region. Existing transects sampled since the 1980s along the Prime Meridian and along an East‐West section at ~62°S should be maintained with regularity to provide answers to the relevant questions. This approach will provide long‐term data to determine trends and will improve representation of processes for regional, Antarctic‐wide, and global modeling efforts—thereby enhancing predictions of the WG in global ocean circulation and climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-02-12
    Description: Passive continental margins offer the unique opportunity to study the processes involved in continental extension and break up as well as the role of hot-spot related magmatism. We conducted combined on- and offshore seismic experiments in Northern Namibia designed to characterize the Southern African passive margin at the interaction with the Walvis Ridge, to assess the interaction of the presumed plume with continental lithosphere and to determine the deep structure of the transition from the coastal fold belt to the stable craton, where the Walvis Ridge hits the African continent. The seismic project integrated three experiments, (A) an onshore, coast-parallel refraction seismic profile, (B) two onshore-offshore wide-angle seismic transects, and (C) a combined on- and offshore seismic experiment to image the sub-Moho velocity (Pn tomography) at the ocean-continent transition (Fig. 1). The knowledge of the lithospheric structure of the margin together with results from other geoscientific studies (e.g., conducted within the SPPSAMPLE, DFG Priority Program 1375, South Atlantic Margin Processes and Links with onshore Evolution) will help to address fundamental questions such as, how continental crust and plume head interact, what the extent and volumes of magmatic underplating is, and how and which inherited (continental) structures might have been involved and utilized in the break-up process.
    Language: English
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...