ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 9 (2012): 1217-1224, doi:10.5194/bg-9-1217-2012.
    Description: Arctic warming is projected to continue throughout the coming century. Yet, our currently limited understanding of the Arctic Ocean carbon cycle hinders our ability to predict how changing conditions will affect local Arctic ecosystems, regional carbon budgets, and global climate. We present here the first set of concurrent, full-depth, dual-isotope profiles for dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and suspended particulate organic carbon (POCsusp) at two sites in the Canada Basin of the Arctic Ocean. The carbon isotope composition of sinking and suspended POC in the Arctic contrasts strongly with open ocean Atlantic and Pacific sites, pointing to a combination of inputs to Arctic POCsusp at depth, including surface-derived organic carbon (OC), sorbed/advected OC, and OC derived from in situ DIC fixation. The latter process appears to be particularly important at intermediate depths, where mass balance calculations suggest that OC derived from in situ DIC fixation contributes up to 22% of POCsusp. As in other oceans, surface-derived OC is still a dominant source to Arctic POCsusp. Yet, we suggest that significantly smaller vertical POC fluxes in the Canada Basin make it possible to see evidence of DIC fixation in the POCsusp pool even at the bulk isotope level.
    Description: The 2008 JOIS hydrographic program was supported by Fisheries and Oceans Canada, the Canadian International Polar Year Office, and the US National Science Foundation (OPP-0424864; lead-PI Andrey Proshutinsky).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 4841-4860, doi:10.5194/bg-12-4841-2015.
    Description: Hydrolyzable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in Arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with a changing climate. Here, we examine the molecular composition and source of hydrolyzable compounds isolated from sedimentary particles derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α,ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolyzable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same Arctic river sedimentary particles and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American Arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolyzable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in Arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land–ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in Arctic river sediments.
    Description: X. Feng acknowledges support from the Chinese National Key Development Program for Basic Research (2014CB954003, 2015CB954201). The ISSS program is supported by the Knut and Alice Wallenberg Foundation, headquarters of the Russian Academy of Sciences, the Swedish Research Council, the US National Oceanic and Atmospheric Administration, the Russian Foundation of Basic Research (#13-05-12028, 13-05-12041), the Swedish Polar Research Secretariat and the Nordic Council of Ministers (Arctic Co-Op and TRI-DEFROST programs). Collection of the Mackenzie sediment samples was supported by Fisheries and Oceans Canada and Indian and Northern Affairs Canada as part of the NOGAP B.6 project. Ö. Gustafsson acknowledges an Academy Research Fellow grant from the Swedish Royal Academy of Sciences. I. P. Semiletov and O. V. Dudarev thank the Government of the Russian Federation (#2013-220-04-157) for support as well as A. I. Khanchuk personally. T. I. Eglinton acknowledges support from Swiss National Science foundation (SNF) grant no. 200021_140850, and grants OCE-9907129, OCE-0137005, and OCE-0526268 from the US National Science Foundation (NSF), the Stanley Watson Chair for Excellence in Oceanography, and ETH Zurich. J. E. Vonk is thankful for support from NWO Rubicon (#825.10.022) and Veni (#863.12.004). B. E. van Dongen is thankful for support from the UK NERC (NE/I024798/1). R. M. Holmes acknowledges support from NSF 0436118, NSF 0732555, and NSF 1107774. X. Feng thanks WHOI for a postdoctoral scholar fellowship and for postdoctoral support from ETH Zurich.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 15 (2018): 3357-3375, doi:10.5194/bg-15-3357-2018.
    Description: The modern-day Godavari River transports large amounts of sediment (170 Tg per year) and terrestrial organic carbon (OCterr; 1.5 Tg per year) from peninsular India to the Bay of Bengal. The flux and nature of OCterr is considered to have varied in response to past climate and human forcing. In order to delineate the provenance and nature of organic matter (OM) exported by the fluvial system and establish links to sedimentary records accumulating on its adjacent continental margin, the stable and radiogenic isotopic composition of bulk OC, abundance and distribution of long-chain fatty acids (LCFAs), sedimentological properties (e.g. grain size, mineral surface area, etc.) of fluvial (riverbed and riverbank) sediments and soils from the Godavari basin were analysed and these characteristics were compared to those of a sediment core retrieved from the continental slope depocenter. Results show that river sediments from the upper catchment exhibit higher total organic carbon (TOC) contents than those from the lower part of the basin. The general relationship between TOC and sedimentological parameters (i.e. mineral surface area and grain size) of the sediments suggests that sediment mineralogy, largely driven by provenance, plays an important role in the stabilization of OM during transport along the river axis, and in the preservation of OM exported by the Godavari to the Bay of Bengal. The stable carbon isotopic (δ13C) characteristics of river sediments and soils indicate that the upper mainstream and its tributaries drain catchments exhibiting more 13C enriched carbon than the lower stream, resulting from the regional vegetation gradient and/or net balance between the upper (C4-dominated plants) and lower (C3-dominated plants) catchments. The radiocarbon contents of organic carbon (Δ14COC) in deep soils and eroding riverbanks suggests these are likely sources of "old" or pre-aged carbon to the Godavari River that increasingly dominates the late Holocene portion of the offshore sedimentary record. While changes in water flow and sediment transport resulting from recent dam construction have drastically impacted the flux, loci, and composition of OC exported from the modern Godavari basin, complicating reconciliation of modern-day river basin geochemistry with that recorded in continental margin sediments, such investigations provide important insights into climatic and anthropogenic controls on OC cycling and burial.
    Description: This project was supported by the Swiss National Science Foundations (“CAPS LOCK” grant no. 200021-140850 and “CAPS-LOCK2” grant no. 200021-163162). Francien Peterse received funding from NWO-Veni grant (grant no. 863.13.016). Liviu Giosan thanks grants from the National Science Foundation (OCE-0841736) and Woods Hole Oceanographic Institution.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 3153-3166, doi:10.5194/bg-7-3153-2010.
    Description: Climate warming in northeastern Siberia may induce thaw-mobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of released carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (δ13C and Δ14C) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-mobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35±15 to 13±9%), whereas coastal erosion OC exhibits a constantly high contribution (51±11 to 60±12%) and marine OC increases offshore (9±7 to 36±10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to ~500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Δ14C ca. −60‰ or ca. 500 14C years) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Δ14C ca. −500‰ or ca. 5500 14C years) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e.g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from degradation of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).
    Description: The ISSS-08 program was supported by the Knut and Alice Wallenberg Foundation, Headquarters of the Far Eastern Branch of the Russian Academy of Sciences, the Swedish Research Council (VR Contract No. 621-2004-4039 and 621-2007-4631), the US National Oceanic and Atmospheric Administration (Siberian Shelf Study), the Russian Foundation of Basic Research (08-05-13572, 08-05-00191-a, and 07-05-00050a), the Swedish Polar Research Secretariat, the Arctic Co-Op Program of the Nordic Council of Ministers (331080-70219) and the National Science Foundation (OPP ARC 0909546). O¨ . G. also acknowledges financial support as an Academy Research Fellow from the Swedish Royal Academy of Sciences, L. S. a Marie Curie grant (contract no. PIEF-GA-2008-220424), T. E. an NSF grant (ARC-0909377) and A. A. support from the Knut and Alice Wallenberg Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 10 (2013): 7065-7080, doi:10.5194/bg-10-7065-2013.
    Description: In recent decades, the Canada Basin of the Arctic Ocean has experienced rapidly decreasing summer sea ice coverage and freshening of surface waters. It is unclear how these changes translate to deeper waters, particularly as our baseline understanding of organic carbon cycling in the deep basin is quite limited. In this study, we describe full-depth profiles of the abundance, distribution and carbon isotopic composition of fatty acids from suspended particulate matter at a seasonally ice-free station and a semi-permanently ice-covered station. Fatty acids, along with suspended particulate organic carbon (POC), are more concentrated and 13C-enriched under ice cover than in ice-free waters. But this influence, apparent at 50 m depth, does not propagate downward below 150 m depth, likely due to the weak biological pump in the central Canada Basin. Branched fatty acids have δ13C values that are similar to suspended POC at all depths and are more 13C-enriched than even-numbered saturated fatty acids at depths above 3000 m. These are likely to be produced in situ by heterotrophic bacteria incorporating organic carbon that is isotopically similar to total suspended POC. Below surface waters, there is also the suggestion of a source of saturated even-numbered fatty acids which could represent contributions from laterally advected organic carbon and/or from chemoautotrophic bacteria. At 3000 m depth and below, a greater relative abundance of long-chain (C20–24), branched and unsaturated fatty acids is consistent with a stronger influence of re-suspended sedimentary organic carbon. At these deep depths, two individual fatty acids (C12 and iso-C17) are significantly depleted in 13C, allowing for the possibility that methane oxidizing bacteria contribute fatty acids, either directly to suspended particulate matter or to shallow sediments that are subsequently mobilized and incorporated into suspended particulate matter within the deep basin.
    Description: The WHOI Postdoctoral Scholar Program and NSF Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator Mass Spectrometry Facility (OCE-0753487) supported S. R. Shah and the WHOI Arctic Research Initiative funded compound-specific isotopic analysis. The 2008 JOIS hydrographic program was supported by Fisheries and Oceans Canada, the Canadian International Polar Year Office, and the US National Science Foundation (OPP-0424864; lead-PI Andrey Proshutinsky).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-14
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 483-511, doi: 10.5194/bg-7-483-2010
    Description: The present paper is the result of a workshop sponsored by the DFG Research Center/Cluster of Excellence MARUM "The Ocean in the Earth System", the International Graduate College EUROPROX, and the Alfred Wegener Institute for Polar and Marine Research. The workshop brought together specialists on organic matter degradation and on proxy-based environmental reconstruction. The paper deals with the main theme of the workshop, understanding the impact of selective degradation/preservation of organic matter (OM) in marine sediments on the interpretation of the fossil record. Special attention is paid to (A) the influence of the molecular composition of OM in relation to the biological and physical depositional environment, including new methods for determining complex organic biomolecules, (B) the impact of selective OM preservation on the interpretation of proxies for marine palaeoceanographic and palaeoclimatic reconstruction, and (C) past marine productivity and selective preservation in sediments. It appears that most of the factors influencing OM preservation have been identified, but many of the mechanisms by which they operate are partly, or even fragmentarily, understood. Some factors have not even been taken carefully into consideration. This incomplete understanding of OM breakdown hampers proper assessment of the present and past carbon cycle as well as the interpretation of OM based proxies and proxies affected by OM breakdown. To arrive at better proxy-based reconstructions "deformation functions" are needed, taking into account the transport and diagenesis-related molecular and atomic modifications following proxy formation. Some emerging proxies for OM degradation may shed light on such deformation functions. The use of palynomorph concentrations and selective changes in assemblage composition as models for production and preservation of OM may correct for bias due to selective degradation. Such quantitative assessment of OM degradation may lead to more accurate reconstruction of past productivity and bottom water oxygenation. Given the cost and effort associated with programs to recover sediment cores for paleoclimatological studies, as well as with generating proxy records, it would seem wise to develop a detailed sedimentological and diagenetic context for interpretation of these records. With respect to the latter, parallel acquisition of data that inform on the fidelity of the proxy signatures and reveal potential diagenetic biases would be of clear value.
    Description: We acknowledge generous financial support by the DFG Research Center/Cluster of Excellence MARUM “The Ocean in the Earth System”, the International Graduate College EUROPROX and the Alfred Wegener Institute for Polar and Marine Research enabling the realisation of the “Workshop on Selective Preservation of Organic Matter: Processes and Impact on the Fossil Record” which formed the basis of this paper. GJMV acknowledges support by the German Science Foundation (DFG grant VE486/2).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 5597-5618, doi:10.5194/bg-12-5597-2015.
    Description: Rapid changes in the volume and sources of discharge during the spring freshet lead to pronounced variations in biogeochemical properties in snowmelt-dominated river basins. We used daily sampling during the onset of the freshet in the Fraser River (southwestern Canada) in 2013 to identify rapid changes in the flux and composition of dissolved material, with a focus on dissolved organic matter (DOM). Previous time series sampling (at twice monthly frequency) of dissolved inorganic species in the Fraser River has revealed smooth seasonal transitions in concentrations of major ions and tracers of water and dissolved load sources between freshet and base flow periods. In contrast, daily sampling reveals a significant increase in dissolved organic carbon (DOC) concentration (200 to 550 μmol L−1) occurring over a matter of days, accompanied by a shift in DOM optical properties, indicating a transition towards higher molecular weight, more aromatic DOM composition. Comparable changes in DOM composition, but not concentration, occur at other times of year, underscoring the role of seasonal climatology in DOM cycling. A smaller data set of total and dissolved Hg concentrations also showed variability during the spring freshet period, although dissolved Hg dynamics appear to be driven by factors beyond DOM as characterized here. The time series records of DOC and particulate organic carbon (POC) concentrations indicate that the Fraser River exports 0.25–0.35 % of its annual basin net primary productivity. The snowmelt-dominated hydrology, forested land cover, and minimal reservoir impoundment of the Fraser River may influence the DOC yield of the basin, which is high relative to the nearby Columbia River and of similar magnitude to that of the Yukon River to the north. Anticipated warming and decreased snowfall due to climate changes in the region may cause an overall decrease in DOM flux from the Fraser River to the coastal ocean in coming decades
    Description: This work was partially supported by a WHOI Ocean Ventures Fund award to BMV and NSF grants EAR-1226818 to BPE, OCE-0851015 to TIE, BPE, and VG, and OCE-0851101 to RGMS, and support to BPE from Jane and James Orr.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth Surface Dynamics 5 (2017): 781-789, doi:10.5194/esurf-5-781-2017.
    Description: Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.
    Description: This study was supported by grants from Woods Hole Oceanographic Institution, the National Science Foundation (OCE-0841736 and OCE-0623766) and Swiss National Science Foundation (“CAPS LOCK” 200021-140850 and “CAPS-LOCK2” 200021-163162).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...