ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-11-28
    Description: In the eastern Black Sea, we determined methane (CH4) concentrations, gas hydrate volumes, and their vertical distribution from combined gas and chloride (Cl−) measurements within pressurized sediment cores. The total gas volume collected from the cores corresponded to concentrations of 1.2–1.4 mol CH4 kg−1 porewater at in-situ pressure, which is equivalent to a gas hydrate saturation of 15–18% of pore volume and amongst the highest values detected in shallow seep sediments. At the central seep site, a high-resolution Cl− profile resolved the upper boundary of gas hydrate occurrence and a continuous layer of hydrates in a sediment column of 120 cm thickness. Including this information, a more precise gas hydrate saturation of 22–24% pore volume could be calculated. This volume was higher in comparison to a saturation calculated from the Cl− profile alone, resulting in only 14.4%. The likely explanation is an active gas hydrate formation from CH4 gas ebullition. The hydrocarbons at Batumi Seep are of shallow biogenic origin (CH4 〉 99.6%), at Pechori Mound they originate from deeper thermocatalytic processes as indicated by the lower ratios of C1 to C2–C3 and the presence of C5.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-01-31
    Description: The nature of the Ionian Sea crust has been the subject of scientific debate for more than 30 years, mainly because seismic imaging of the deep crust and upper mantle of the Ionian Abyssal Plain (IAP) has not been conclusive to date. The IAP is sandwiched between the Calabrian and Hellenic subduction zones in the central Mediterranean. To univocally confirm the proposed oceanic nature of the IAP crust as a remnant of the Tethys ocean and to confute its interpretation as a strongly thinned part of the African continental crust, a NE-SW oriented 131 km long seismic refraction and wide-angle reflection profile consisting of eight ocean bottom seismometers and hydrophones was acquired in 2014. A P-wave velocity model developed from travel time forward modelling is refined by gravimetric data and synthetic modelling of the seismic data. A roughly 6km thick crust with velocities ranging from 5.1km/s to 7.2km/s, top to bottom, can be traced throughout the IAP. In the vicinity of the Medina Seamounts at the southern IAP boundary, the crust thickens to about 9km and seismic velocities decrease to 6.8km/s at the crust-mantle boundary. The seismic velocity distribution and depth of the crust-mantle boundary in the IAP document its oceanic nature, and support the interpretation of the IAP as a remnant of the Tethys oceanic lithosphere formed during the Permian and Triassic period.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...