ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2012-11-29
    Print ISSN: 1751-7362
    Electronic ISSN: 1751-7370
    Topics: Biology
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
  • 5
    Publication Date: 2021-03-18
    Description: Benthic microbial methanogenesis is a known source of methane in marine systems. In most sediments, the majority of methanogenesis is located below the sulfate-reducing zone, as sulfate reducers outcompete methanogens for the major substrates hydrogen and acetate. The coexistence of methanogenesis and sulfate reduction has been shown before and is possible through the usage of noncompetitive substrates by methanogens such as methanol or methylated amines. However, knowledge about the magnitude, seasonality, and environmental controls of this noncompetitive methane production is sparse. In the present study, the presence of methanogenesis within the sulfate reduction zone (SRZ methanogenesis) was investigated in sediments (0–30 cm below seafloor, cm b.s.f.) of the seasonally hypoxic Eckernförde Bay in the southwestern Baltic Sea. Water column parameters such as oxygen, temperature, and salinity together with porewater geochemistry and benthic methanogenesis rates were determined in the sampling area "Boknis Eck" quarterly from March 2013 to September 2014 to investigate the effect of seasonal environmental changes on the rate and distribution of SRZ methanogenesis, to estimate its potential contribution to benthic methane emissions, and to identify the potential methanogenic groups responsible for SRZ methanogenesis. The metabolic pathway of methanogenesis in the presence or absence of sulfate reducers, which after the addition of a noncompetitive substrate was studied in four experimental setups: (1) unaltered sediment batch incubations (net methanogenesis), (2) 14C-bicarbonate labeling experiments (hydrogenotrophic methanogenesis), (3) manipulated experiments with the addition of either molybdate (sulfate reducer inhibitor), 2-bromoethanesulfonate (methanogen inhibitor), or methanol (noncompetitive substrate, potential methanogenesis), and (4) the addition of 13C-labeled methanol (potential methylotrophic methanogenesis). After incubation with methanol, molecular analyses were conducted to identify key functional methanogenic groups during methylotrophic methanogenesis. To also compare the magnitudes of SRZ methanogenesis with methanogenesis below the sulfate reduction zone (〉 30 cm b.s.f.), hydrogenotrophic methanogenesis was determined by 14C-bicarbonate radiotracer incubation in samples collected in September 2013. SRZ methanogenesis changed seasonally in the upper 30 cm b.s.f. with rates increasing from March (0.2 nmol cm−3 d−1) to November (1.3 nmol cm−3 d−1) 2013 and March (0.2 nmol cm−3 d−1) to September (0.4 nmol cm−3 d−1) 2014. Its magnitude and distribution appeared to be controlled by organic matter availability, C / N, temperature, and oxygen in the water column, revealing higher rates in the warm, stratified, hypoxic seasons (September–November) compared to the colder, oxygenated seasons (March–June) of each year. The majority of SRZ methanogenesis was likely driven by the usage of noncompetitive substrates (e.g., methanol and methylated compounds) to avoid competition with sulfate reducers, as was indicated by the 1000–3000-fold increase in potential methanogenesis activity observed after methanol addition. Accordingly, competitive hydrogenotrophic methanogenesis increased in the sediment only below the depth of sulfate penetration (〉 30 cm b.s.f.). Members of the family Methanosarcinaceae, which are known for methylotrophic methanogenesis, were detected by PCR using Methanosarcinaceae-specific primers and are likely to be responsible for the observed SRZ methanogenesis. The present study indicates that SRZ methanogenesis is an important component of the benthic methane budget and carbon cycling in Eckernförde Bay. Although its contributions to methane emissions from the sediment into the water column are probably minor, SRZ methanogenesis could directly feed into methane oxidation above the sulfate–methane transition zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-02-01
    Description: Benthic nitrogen (N2) fixation and sulfate reduction (SR) were investigated in the Peruvian oxygen minimum zone (OMZ). Sediment samples, retrieved by a multiple corer were taken at six stations (70–1025 m) along a depth transect at 12° S, covering anoxic and hypoxic bottom water conditions. Benthic N2 fixation was detected at all sites, with high rates measured in OMZ mid-waters between the 70 and 253 m and lowest N2 fixation rates below 253 m down to 1025 m water depth. SR rates were decreasing with increasing water depth, with highest rates at the shallow site. Benthic N2 fixation depth profiles largely overlapped with SR depth profiles, suggesting that both processes are coupled. The potential of N2 fixation by SR bacteria was verified by the molecular analysis of nifH genes. Detected nifH sequences clustered with SR bacteria that have been demonstrated to fix N2 in other benthic environments. Depth-integrated rates of N2 fixation and SR showed no direct correlation along the 12° S transect, suggesting that the benthic diazotrophs in the Peruvian OMZ are being controlled by additional various environmental factors. The organic matter availability and the presence of sulfide appear to be major drivers for benthic diazotrophy. It was further found that N2 fixation was not inhibited by high ammonium concentrations. N2 fixation rates in OMZ sediments were similar to rates measured in other organic-rich sediments. Overall, this work improves our knowledge on N sources in marine sediments and contributes to a better understanding of N cycling in OMZ sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: We studied the concurrence of methanogenesis and sulfate reduction in surface sediments (0–25 cm below sea floor, cmbsf) at six stations (70, 145, 253, 407, 770 and 1024 m) along the Peruvian margin (12° S). This oceanographic region is characterized by high carbon export to the seafloor, creating an extensive oxygen minimum zone (OMZ) on the shelf, both factors that could favor surface methanogenesis. Sediments sampled along the depth transect traversed areas of anoxic and oxic conditions in the bottom-near water. Net methane production (batch incubations) and sulfate reduction (35S-sulfate radiotracer incubation) were determined in the upper 0–25 cmbsf of multicorer cores from all stations, while deep hydrogenotrophic methanogenesis (〉 30 cmbsf, 14C-bicarbonate radiotracer incubation) was determined in two gravity cores at selected sites (78 and 407 m). Furthermore, stimulation (methanol addition) and inhibition (molybdate addition) experiments were carried out to investigate the relationship between sulfate reduction and methanogenesis. Highest rates of methanogenesis and sulfate reduction in the surface sediments, integrated over 0–25 cmbsf, were observed on the shelf (70–253 m, 0.06–0.1 and 0.5–4.7 mmol m−2 d−1, respectively), while lowest rates were discovered at the deepest site (1024 m, 0.03 and 0.2 mmol m−2 d−1, respectively). The addition of methanol resulted in significantly higher surface methanogenesis activity, suggesting that the process was mostly based on non-competitive substrates, i.e., substrates not used by sulfate reducers. In the deeper sediment horizons, where competition was probably relieved due to the decline of sulfate, the usage of competitive substrates was confirmed by the detection of hydrogenotrophic activity in the sulfate-depleted zone at the shallow shelf station (70 m). Surface methanogenesis appeared to be correlated to the availability of labile organic matter (C / N ratio) and organic carbon degradation (DIC production), both of which support the supply of methanogenic substrates. A negative correlation of methanogenesis rates with dissolved oxygen in the bottom-near water was not obvious, however, anoxic conditions within the OMZ might be advantageous for methanogenic organisms at the sediment–water interface. Our results revealed a high relevance of surface methanogenesis on the shelf, where the ratio between surface to deep (below sulfate penetration) methanogenic activity ranged between 0.13 and 105. In addition, methane concentration profiles indicate a partial release of surface methane into the water column as well as a partial consumption of methane by anaerobic methane oxidation (AOM) in the surface sediment. The present study suggests that surface methanogenesis might play a greater role in benthic methane budgeting than previously thought, especially for fueling AOM above the sulfate-methane transition zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Despite the worldwide occurrence of marine hypoxic regions, benthic nitrogen (N) cycling within these areas is poorly understood and it is generally assumed that these areas represent zones of intense fixed N loss from the marine system. Sulfate reduction can be an important process for organic matter degradation in sediments beneath hypoxic waters and many sulfate-reducing bacteria (SRB) have the genetic potential to fix molecular N (N2). Therefore, SRB may supply fixed N to these systems, countering some of the N lost via microbial processes such as denitrification and anaerobic ammonium oxidation. The objective of this study was to evaluate if N2-fixation, possibly by SRB, plays a role in N cycling within the seasonally hypoxic sediments from Eckernförde Bay, Baltic Sea. Monthly samplings were performed over the course of one year to measure N2-fixation and sulfate reduction rates, to determine the seasonal variations in bioturbation (bioirrigation) activity and important benthic geochemical profiles, such as sulfur and N compounds, and to monitor changes in water column temperature and oxygen concentrations. Additionally, at several time points, rates of benthic denitrification were also measured and the active N-fixing community was examined via molecular tools. Integrated rates of N2-fixation and sulfate reduction showed a similar seasonality pattern, with highest rates occurring in August (approx. 22 and 880 nmol cm−3 d−1 of N and SO42−, respectively) and October (approx. 22 and 1300 nmol cm−3 d−1 of N and SO42−, respectively), and lowest rates occurring in February (approx. 8 and 32 nmol cm−3 d−1 of N and SO42−, respectively). These rate changes were positively correlated with bottom water temperatures and previous reported plankton bloom activities, and negatively correlated with bottom water oxygen concentrations. Other variables that also appeared to play a role in rate determination were bioturbation, bubble irrigation and winter storm events. Molecular analysis demonstrated the presence of nifH sequences related to two known N2-fixing SRB, namely Desulfovibrio vulgaris and Desulfonema limicola, supporting the hypothesis that some of the nitrogenase activity detected may be attributed to SRB. Denitrification appeared to follow a similar trend as the other microbial processes and the ratio of denitrification to N2-fixation ranged from 6.8 in August to 1.1 in February, indicating that in February, the two processes are close to being in balance in terms of N loss and N gain. Overall, our data show that Eckernförde Bay represents a complex ecosystem where numerous environmental variables combine to influence benthic microbial activities involving N and sulfur cycling.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-10-26
    Description: Coastal seas may account for more than 75 % of global oceanic methane emissions. There, methane is mainly produced microbially in anoxic sediments from where it can escape to the overlying water column. Aerobic methane oxidation (MOx) in the water column acts as a biological filter reducing the amount of methane that eventually evades to the atmosphere. The efficiency of the MOx filter is potentially controlled by the availability of dissolved methane and oxygen, as well as temperature, salinity, and hydrographic dynamics, and all of these factors undergo strong temporal fluctuations in coastal ecosystems. In order to elucidate the key environmental controls, specifically the effect of oxygen availability, on MOx in a seasonally stratified and hypoxic coastal marine setting, we conducted a 2-year time-series study with measurements of MOx and physico-chemical water column parameters in a coastal inlet in the southwestern Baltic Sea (Eckernförde Bay). We found that MOx rates always increased toward the seafloor, but were not directly linked to methane concentrations. MOx exhibited a strong seasonal variability, with maximum rates (up to 11.6 nmol l−1 d−1) during summer stratification when oxygen concentrations were lowest and bottom-water temperatures were highest. Under these conditions, 70–95 % of the sediment-released methane was oxidized, whereas only 40–60 % were consumed during the mixed and oxygenated periods. Laboratory experiments with manipulated oxygen concentrations in the range of 0.2–220 µmol l−1 revealed a sub-micromolar oxygen-optimum for MOx at the study site. In contrast, the fraction of methane-carbon incorporation into the bacterial biomass (compared to the total amount of oxidised methane) was up to 38-fold higher at saturated oxygen concentrations, suggesting a different partitioning of catabolic and anabolic processes under oxygen-replete and oxygen-starved conditions, respectively. Our results underscore the importance of MOx in mitigating methane emission from coastal waters and indicate an organism-level adaptation of the water column methanotrophs to hypoxic conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences (BG), 7 . pp. 3095-3108.
    Publication Date: 2012-07-06
    Description: A shallow-water area in the Santa Barbara Channel, California, known collectively as the Coal Oil Point seep field, is one of the largest natural submarine hydrocarbon emission areas in the world. Both gas and oil are seeping constantly through a predominantly sandy seabed into the ocean. This study focused on the methanotrophic activity within the surface sediments (0–15 cm) of the permeable seabed in the so-called Brian Seep area at a water depth of ~10 m. Detailed investigations of the sediment biogeochemistry of active gas vents indicated that it is driven by fast advective transport of water through the sands, resulting in a deep penetration of oxidants (oxygen, sulfate). Maxima of microbial methane consumption were found at the sediment-water interface and in deeper layers of the sediment, representing either aerobic or anaerobic oxidation of methane, respectively. Methane consumption was relatively low (0.6–8.7 mmolm−2 d−1) in comparison to gas hydratebearing fine-grained sediments on the continental shelf. The low rates and the observation of free gas migrating through permeable coastal sediments indicate that a substantial proportion of methane can escape the microbial methane filter in coastal sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...