ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-10-13
    Description: Two statistical methods are tested to reconstruct the interannual variations in past sea surface temperatures (SSTs) of the North Atlantic (NA) Ocean over the past millennium based on annually resolved and absolutely dated marine proxy records of the bivalve mollusk Arctica islandica. The methods are tested in a pseudo-proxy experiment (PPE) setup using state-of-the-art climate models (CMIP5 Earth system models) and reanalysis data from the COBE2 SST data set. The methods were applied in the virtual reality provided by global climate simulations and reanalysis data to reconstruct the past NA SSTs using pseudo-proxy records that mimic the statistical characteristics and network of Arctica islandica. The multivariate linear regression methods evaluated here are principal component regression and canonical correlation analysis. Differences in the skill of the climate field reconstruction (CFR) are assessed according to different calibration periods and different proxy locations within the NA basin. The choice of the climate model used as a surrogate reality in the PPE has a more profound effect on the CFR skill than the calibration period and the statistical reconstruction method. The differences between the two methods are clearer for the MPI-ESM model due to its higher spatial resolution in the NA basin. The pseudo-proxy results of the CCSM4 model are closer to the pseudo-proxy results based on the reanalysis data set COBE2. Conducting PPEs using noise-contaminated pseudo-proxies instead of noise-free pseudo-proxies is important for the evaluation of the methods, as more spatial differences in the reconstruction skill are revealed. Both methods are appropriate for the reconstruction of the temporal evolution of the NA SSTs, even though they lead to a great loss of variance away from the proxy sites. Under reasonable assumptions about the characteristics of the non-climate noise in the proxy records, our results show that the marine network of Arctica islandica can be used to skillfully reconstruct the spatial patterns of SSTs at the eastern NA basin.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-06-08
    Description: This study addresses the possibility of carrying out spatially resolved global reconstructions of annual mean temperature using a worldwide network of proxy records and a method based on the search of analogues. Several variants of the method are evaluated, and their performance is analysed. As a test bed for the reconstruction, the PAGES 2k proxy database (version 1.9.0) is employed as a predictor, the HadCRUT4 dataset is the set of observations used as the predictand and target, and a set of simulations from the PMIP3 simulations are used as a pool to draw analogues and carry out pseudo-proxy experiments (PPEs). The performance of the variants of the analogue method (AM) is evaluated through a series of PPEs in growing complexity, from a perfect-proxy scenario to a realistic one where the pseudo-proxy records are contaminated with noise (white and red) and missing values, mimicking the limitations of actual proxies. Additionally, the method is tested by reconstructing the real observed HadCRUT4 temperature based on the calibration of real proxies. The reconstructed fields reproduce the observed decadal temperature variability. From all the tests, we can conclude that the analogue pool provided by the PMIP3 ensemble is large enough to reconstruct global annual temperatures during the Common Era. Furthermore, the search of analogues based on a metric that minimises the RMSE in real space outperforms other evaluated metrics, including the search of analogues in the range-reduced space expanded by the leading empirical orthogonal functions (EOFs). These results show how the AM is able to spatially extrapolate the information of a network of local proxy records to produce a homogeneous gap-free climate field reconstruction with valuable information in areas barely covered by proxies and make the AM a suitable tool to produce valuable climate field reconstructions for the Common Era.
    Print ISSN: 1814-9324
    Electronic ISSN: 1814-9332
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-11-17
    Description: Coastal sea-level trends in the Baltic Sea display decadal-scale variations around a long-term centennial trend. In this study, we analyse the spatial and temporal characteristics of the decadal trend variations and investigate the links between coastal sea-level trends and atmospheric forcing on a decadal timescale. For this analysis, we use monthly means of sea-level and climatic data sets. The sea-level data set is composed of long tide gauge records and gridded sea surface height (SSH) reconstructions. Climatic data sets are composed of sea-level pressure, air temperature, precipitation, evaporation, and climatic variability indices. The analysis indicates that atmospheric forcing is a driving factor of decadal sea-level trends. However, its effect is geographically heterogeneous. This impact is large in the northern and eastern regions of the Baltic Sea. In the southern Baltic Sea area, the impacts of atmospheric circulation on decadal sea-level trends are smaller. To identify the influence of the large-scale factors other than the effect of atmospheric circulation in the same season on Baltic Sea sea-level trends, we filter out the direct signature of atmospheric circulation for each season separately on the Baltic Sea level through a multivariate linear regression model and analyse the residuals of this regression model. These residuals hint at a common underlying factor that coherently drives the decadal sea-level trends in the whole Baltic Sea. We found that this underlying effect is partly a consequence of decadal precipitation trends in the Baltic Sea basin in the previous season. The investigation of the relation between the AMO index and sea-level trends implies that this detected underlying factor is not connected to oceanic forcing driven from the North Atlantic region.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-12
    Description: Two statistical methods are tested to reconstruct the inter-annual variations of past sea surface temperatures (SSTs) of the North Atlantic (NA) Ocean over the past millennium, based on annually resolved and absolutely dated marine proxy records of the bivalve mollusk Arctica islandica. The methods are tested in a pseudo-proxy experiment (PPE) set-up using state-of-the-art climate models (CMIP5 Earth System Models) and reanalysis data from the COBE2 SST data set. The methods were applied in the virtual reality provided by global climate simulations and reanalysis data to reconstruct the past NA SSTs, using pseudoproxy records that mimic the statistical characteristics and network of Arctica islandica. The multivariate linear regression methods evaluated here are Principal Component Regression and Canonical Correlation Analysis. Differences in the skill of the Climate Field Reconstruction (CFR) are assessed according to different calibration periods and different proxy locations within the NA basin. The choice of the climate model used as surrogate reality in the PPE has a more profound effect on the CFR skill than the calibration period and the statistical reconstruction method. The differences between the two methods are clearer for the MPI-ESM model, due to its higher spatial resolution in the NA basin. The pseudo-proxy results of the CCSM4 model are closer to the pseudo-proxy results based on the reanalysis data set COBE2. The addition of noise in the pseudo-proxies is important for the evaluation of the methods, as more spatial differences in the reconstruction skill are revealed. More profound differences between methods are obtained when the number of proxy records is smaller than five, making the Principal Component Regression a more appropriate method in this case. Despite the differences, the results show that the marine network of Arctica islandica can be used to skilfully reconstruct the spatial patterns of SSTs at the eastern NA basin.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-07
    Description: The pre-industrial millennium is among the periods selected by the Paleoclimate Model Intercomparison Project (PMIP) for experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6) and the fourth phase of the PMIP (PMIP4). The past1000 transient simulations serve to investigate the response to (mainly) natural forcing under background conditions not too different from today, and to discriminate between forced and internally generated variability on interannual to centennial timescales. This paper describes the motivation and the experimental set-ups for the PMIP4-CMIP6 past1000 simulations, and discusses the forcing agents orbital, solar, volcanic, and land use/land cover changes, and variations in greenhouse gas concentrations. The past1000 simulations covering the pre-industrial millennium from 850 Common Era (CE) to 1849 CE have to be complemented by historical simulations (1850 to 2014 CE) following the CMIP6 protocol. The external forcings for the past1000 experiments have been adapted to provide a seamless transition across these time periods. Protocols for the past1000 simulations have been divided into three tiers. A default forcing data set has been defined for the Tier 1 (the CMIP6 past1000) experiment. However, the PMIP community has maintained the flexibility to conduct coordinated sensitivity experiments to explore uncertainty in forcing reconstructions as well as parameter uncertainty in dedicated Tier 2 simulations. Additional experiments (Tier 3) are defined to foster collaborative model experiments focusing on the early instrumental period and to extend the temporal range and the scope of the simulations. This paper outlines current and future research foci and common analyses for collaborative work between the PMIP and the observational communities (reconstructions, instrumental data).
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-07-17
    Description: We statistically analyse the relationship between the structure of migrating dunes in the southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as a proxy for past wind conditions at an interannual resolution. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2017). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. The dunes present layers with different thicknesses that can be assigned to absolute dates at interannual timescales and put in relation to seasonal wind conditions. To statistically analyse this record and calibrate it as a wind proxy, we used a gridded regional meteorological reanalysis data set (coastDat2) covering recent decades. The identified link between the dune annual layers and wind conditions was additionally supported by the co-variability between dune layers and observed sea level variations in the southern Baltic Sea. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the frequency of days with specific wind conditions in a given season and dune migration velocities derived for that season. To some extent, the dune records can be seen as analogous to tree-ring width records, and hence we use a proxy validation method usually applied in dendrochronology, cross-validation with the leave-one-out method, when the observational record is short. The revealed correlations between the wind record from the reanalysis and the wind record derived from the dune structure is in the range between 0.28 and 0.63, yielding similar statistical validation skill as dendroclimatological records.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-12-05
    Description: The westerlies and trade winds over the South Atlantic and Indian Ocean are important drivers of the regional oceanography around southern Africa, including features such as the Agulhas Current, the Agulhas leakage, and the Benguela upwelling. Agulhas leakage constitutes a fraction of warm and saline water transport from the Indian Ocean into the South Atlantic. The leakage is stronger during intensified westerlies. Here, we analyze the wind stress of different observational and modeled atmospheric data sets (covering the last 2 millennia, the recent decades, and the 21st century) with regard to the intensity and position of the southeasterly trades and the westerlies. The analysis reveals that variations of both wind systems go hand in hand and that a poleward shift of the westerlies and trades and an intensification of westerlies took place during the recent decades. Furthermore, upwelling in South Benguela is slightly intensified when trades are shifted poleward. Projections for strength and position of the westerlies in the 21st century depend on assumed CO2 emissions and on their effect relative to the ozone forcing. In the strongest emission scenario (RCP8.5) the simulations show a further southward displacement, whereas in the weakest emission scenario (RCP2.6) a northward shift is modeled, possibly due to the effect of ozone recovery dominating the effect of anthropogenic greenhouse forcing. We conclude that the Agulhas leakage has intensified during the last decades and is projected to increase if greenhouse gas emissions are not reduced. This will have a small impact on Benguela upwelling strength and may also have consequences for water mass characteristics in the upwelling region. An increased contribution of Agulhas water to the upwelling water masses will import more preformed nutrients and oxygen into the upwelling region.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-06-23
    Description: The eastern boundary upwelling systems, located in the subtropics at the eastern boundary of the Atlantic and Pacific oceans and mainly driven by the trade winds, are the major coastal upwelling regions. Previous studies have suggested that the intensity of upwelling in these areas in the past centuries may have been influenced by the external radiative forcing, for instance by changes in solar irradiance, and it will also be influenced in the future by the increasing atmospheric greenhouse gases. Here, we analyse the impact of the external climate forcing on these upwelling systems in ensembles of simulations of two Earth system models. The ensembles contain three simulations for each period covering the past millennium (900–1849) and the 20th century (1850–2005). One of these Earth system models additionally includes the near future (2006–2100). Using a set of simulations, differing only in their initial conditions, enables us to test whether the observed variability and trends are driven by the external radiative forcing. Our analysis shows that the variability of the simulated upwelling is largely not affected by the external forcing and that, generally, there are no significant trends in the periods covering the past and future. Only in future simulations with the strongest increase of greenhouse gas concentrations the upwelling trends are significant and appear in all members of the ensemble.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-12-16
    Description: We statistically analyse the relationship between the structure of migrating dunes in the Southern Baltic and the driving wind conditions over the past 26 years, with the long-term aim of using migrating dunes as proxy for past wind conditions at interannual resolution. Dunes as wind proxies are not a totally new idea to the scientific community, but existing studies have so far analysed the link of dune structure and wind only on temporal resolutions of decades or millennia. The present analysis is based on the dune record derived from geo-radar measurements by Ludwig et al. (2016). The dune system is located at the Baltic Sea coast of Poland and is migrating from west to east along the coast. Ludwig et al. (2016) suggested that the analysed dunes show an alternation in the sediment composition that can be used to determine the annual migration velocity which can be seen as a wind proxy. Here, we present a detailed statistical analysis of this record and calibrate it as a wind proxy. To our knowledge there are no adequate, homogeneous meteorological station data for this area available to validate this proxy. Therefore we based our analysis on a gridded regional meteorological reanalysis data set (coastDat2) over the recent decades. We include precipitation and temperature into our analysis, in addition to wind, to learn more about the dependency between these three atmospheric factors and their common influence on the dune system. We set up a statistical linear model based on the correlation between the number of days with west and south-west wind directions above a pre-defined wind speed threshold and the dune migration velocities. To some extent, the dune intervals can be seen analogous to a tree ring widths, and hence we used a proxy-validation method usually applied in dendrochronology when the available meteorological record is short, namely the cross-validation with the leave-one-out-method. This revealed correlations between the wind record from the reanalysis and the reconstructed wind record derived from the dune structure in the range of 0.28 and 0.63. Thus, our study verifies that this type of dunes can be validated with dendrochronological methods and derive acceptable validation values as a wind proxy. The identified link between the dune annual layers and wind conditions from the meteorological reanalysis was additionally supported by the co-variability between dune layers and sea-level variations in the Southern Baltic Sea. Baltic Sea level variability in winter time is known to be strongly driven by westerly winds over this region. These results, therefore, provide an independent support, solely based on observations, of the link between annual dune layers and prevailing wind conditions.
    Electronic ISSN: 2190-4995
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-07
    Description: Arabian Sea upwelling in the past has been generally studied based on the sediment records. We apply two earth system models and analyse the simulated water vertical velocity to investigate the variations of the coastal upwelling in the western Arabian Sea over the last millennium. In addition, the same models, with slightly different configurations, are also employed to study the changes in upwelling in the 21st century under the strongest and the weakest greenhouse gas emission scenarios. With a negative long-term trend caused by the orbital forcing of the models, the upwelling over the last millennium is found to be closely correlated with the sea surface temperature, the Indian summer Monsoon and sediment records. The future upwelling under the Representative Concentration Pathway (RCP) 8.5 scenario reveals a negative trend, in contrast with the positive trend displayed by the upwelling favourable along-shore winds. Therefore, it is likely that other factors, like water stratification in the upper ocean layers caused by the stronger surface warming overrides the effect from the upwelling favourable wind. No significant trend is found for the upwelling under the RCP2.6 scenario, which is likely due to a compensation between the opposing effects of the increase in upwelling favourable winds and the stratification of the water column.
    Print ISSN: 1814-9340
    Electronic ISSN: 1814-9359
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...