ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-07
    Description: Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05° latitude by 0.05° longitude at 8-day interval by revising a light use efficiency model (i.e. EC-LUE). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 84 towers from the FLUXNET2015 dataset, covering nine major ecosystem types of the globe, were used to calibrate and validate the model. The revised EC-LUE model could explain 83 % and 68 % of the spatial variations in the annual GPP at 42 calibration and 43 validation sites, respectively. In particular, the revised EC-LUE model could very well reproduce (~ 74 % sites R2 〉 0.5; averaged R2 = 0.65) the interannual variations in GPP at 51 sites with observations greater than 5-years. At global scale, sensitivity analysis indicated that the long-term changes of environmental variables could be well reflected in the global GPP dataset. The CO2 fertilization effect on the global GPP (0.14 ± 0.001 Pg C yr−1) could be offset by the increased VPD (−0.16 ± 0.02 Pg C yr−1). The global GPP derived from different datasets exist substantial uncertainty in magnitude and interannual variations. The magnitude of global summed GPP simulated by the revised EC-LUE model was comparable to other global models. While the revised EC-LUE model has a unique superiority in simulating the interannual variations in GPP at both site level and global scales. The revised EC-LUE model provides a reliable long-term estimate of global GPP because of integrating the important environmental variables. The dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v1 (Zheng et al., 2019).
    Electronic ISSN: 1866-3591
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-05-02
    Description: Water resources assessment is crucial for human well-being and ecosystem’s health. Assessments by considering both the blue and green water are of great significance as the green water plays a critical but often ignored role in the terrestrial ecosystem, especially in arid and semi-arid regions. Many approaches have been developed for green and blue water valuation, while few of them considers the interrelationship between them. This study proposed a new framework for green and blue water assessment by considering the interactions between them in an arid endorheic river basin where hydrological cycling is dramatically altered by human activities. Results show that even though the green water is the dominant water resources, the blue water is also critical. Most of the blue water are transformed to green water through physically and human induced processes to meet the water demand of ecosystems. Time and spatial variability of water supply and consumption forms totally different blue and green water regimes in different ecosystems. We also found that human use an increasing share of water with the decrease of the water availability. The massive water use by human reduces the water use for natural ecosystems. This indicates that natural ecosystems will take a higher risk of freshwater use when the water use competition increases. This study provides crucial information to better understand the interactions between green and blue water by assessing water resources in an explicit way. It also provides crucial implications for water management aiming to make the balance between humankind and nature.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-25
    Description: Early-season crop identification is of great importance for monitoring crop growth and predicting yield for decision makers and private sectors. As one of the largest producers of winter wheat worldwide, China outputs more than 18 % of the global production of winter wheat. However, there are no distribution maps of winter wheat over a large spatial extent with high spatial resolution. In this study, we applied a phenology-based approach to distinguish winter wheat from other crops by comparing the similarity of the seasonal changes of satellite-based vegetation index over all croplands with a standard seasonal change derived from known winter wheat fields. Especially, this study examined the potential of early-season large-area mapping of winter wheat and developed accurate winter wheat maps with 30 m spatial resolution for 3 years (2016–2018) over 11 provinces, which produce more than 98 % of the winter wheat in China. A comprehensive assessment based on survey samples revealed producer's and user's accuracies higher than 89.30 % and 90.59 %, respectively. The estimated winter wheat area exhibited good correlations with the agricultural statistical area data at the municipal and county levels. In addition, the earliest identifiable time of the geographical location of winter wheat was achieved by the end of March, giving a lead time of approximately 3 months before harvest, and the optimal identifiable time of winter wheat was at the end of April with an overall accuracy of 89.88 %. These results are expected to aid in the timely monitoring of crop growth. The 30 m winter wheat maps in China are available via an open-data repository (DOI: https://doi.org/10.6084/m9.figshare.12003990, Dong et al., 2020a).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-12
    Description: Satellite-based models have been widely used to simulate vegetation gross primary production (GPP) at the site, regional, or global scales in recent years. However, accurately reproducing the interannual variations in GPP remains a major challenge, and the long-term changes in GPP remain highly uncertain. In this study, we generated a long-term global GPP dataset at 0.05∘ latitude by 0.05∘ longitude and 8 d interval by revising a light use efficiency model (i.e., EC-LUE model). In the revised EC-LUE model, we integrated the regulations of several major environmental variables: atmospheric CO2 concentration, radiation components, and atmospheric vapor pressure deficit (VPD). These environmental variables showed substantial long-term changes, which could greatly impact the global vegetation productivity. Eddy covariance (EC) measurements at 95 towers from the FLUXNET2015 dataset, covering nine major ecosystem types around the globe, were used to calibrate and validate the model. In general, the revised EC-LUE model could effectively reproduce the spatial, seasonal, and annual variations in the tower-estimated GPP at most sites. The revised EC-LUE model could explain 71 % of the spatial variations in annual GPP over 95 sites. At more than 95 % of the sites, the correlation coefficients (R2) of seasonal changes between tower-estimated and model-simulated GPP are larger than 0.5. Particularly, the revised EC-LUE model improved the model performance in reproducing the interannual variations in GPP, and the averaged R2 between annual mean tower-estimated and model-simulated GPP is 0.44 over all 55 sites with observations longer than 5 years, which is significantly higher than those of the original EC-LUE model (R2=0.36) and other LUE models (R2 ranged from 0.06 to 0.30 with an average value of 0.16). At the global scale, GPP derived from light use efficiency models, machine learning models, and process-based biophysical models shows substantial differences in magnitude and interannual variations. The revised EC-LUE model quantified the mean global GPP from 1982 to 2017 as 106.2±2.9 Pg C yr−1 with the trend 0.15 Pg C yr−1. Sensitivity analysis indicated that GPP simulated by the revised EC-LUE model was sensitive to atmospheric CO2 concentration, VPD, and radiation. Over the period of 1982–2017, the CO2 fertilization effect on the global GPP (0.22±0.07 Pg C yr−1) could be partly offset by increased VPD (-0.17±0.06 Pg C yr−1). The long-term changes in the environmental variables could be well reflected in global GPP. Overall, the revised EC-LUE model is able to provide a reliable long-term estimate of global GPP. The GPP dataset is available at https://doi.org/10.6084/m9.figshare.8942336.v3 (Zheng et al., 2019).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...