ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-05-07
    Description: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on-board the European ENVIronmental SATellite (ENVISAT) launched on 1 March 2002, is a middle infrared Fourier Transform spectrometer measuring the atmospheric emission spectrum in limb sounding geometry. The instrument is capable to retrieve the vertical distribution of temperature and trace gases, aiming at the study of climate and atmospheric chemistry and dynamics, and at applications to data assimilation and weather forecasting. MIPAS operated in its standard observation mode for approximately two years, from July 2002 to March 2004, with scans performed at nominal spectral resolution of 0.025 cm−1 and covering the altitude range from the mesosphere to the upper troposphere with relatively high vertical resolution (about 3 km in the stratosphere). Only reduced spectral resolution measurements have been performed subsequently. MIPAS data were re-processed by ESA using updated versions of the Instrument Processing Facility (IPF v4.61 and v4.62) and provided a complete set of level-2 operational products (geo-located vertical profiles of temperature and volume mixing ratio of H2O,O3, HNO3, CH4, N2O and NO2) with quasi continuous and global coverage in the period of MIPAS full spectral resolution mission. In this paper, we report a detailed description of the validation of MIPAS-ENVISAT operational ozone data, that was based on the comparison between MIPAS v4.61 (and, to a lesser extent, v4.62) O3 VMR profiles and a comprehensive set of correlative data, including observations from ozone sondes,ground-based lidar, FTIR and microwave radiometers, remote-sensing and in situ instruments on-board stratospheric aircraft and balloons, concurrent satellite sensors and ozone fields assimilated by the European Center for Medium-range Weather Forecasting. A coordinated effort was carried out, using common criteria for the selection of individual validation data sets, and similar methods for the comparisons. This enabled merging the individual results from a variety of independent reference measurements of proven quality (i.e., well characterised error budget) into an overall evaluation of MIPAS O3 data quality, having both statistical strength and the widest spatial and temporal coverage. Collocated measurements from ozone sondes and ground-based lidar and microwave radiometers of the Network for Detection Atmospheric Composition Change (NDACC) were selected to carry out comparisons with time series of MIPAS O3 partial columns and to identify groups of stations and time periods with a uniform pattern of ozone differences, that were subsequently used for a vertically resolved statistical analysis. The results of the comparison are classified according to synoptic and regional systems and to altitude intervals, showing a generally good agreement within the comparison error bars in the upper and middle stratosphere. Significant differences emerge in the lower stratosphere and are only partly explained by the larger contributions of horizontal and vertical smoothing differences and of collocation errors to the total uncertainty. Further results obtained from a purely statistical analysis of the same data set from NDACC ground-based lidar stations, as well as from additional ozone soundings at middle latitudes and from NDACC ground-based FTIR measurements, confirm the validity of MIPAS O3 profiles down to the lower stratosphere, with evidence of larger discrepancies at the lowest altitudes. The validation against O3 VMR profiles using collocated observations performed by other satellite sensors (SAGE II, POAM III, ODIN-SMR, ACE-FTS, HALOE, GOME) and ECMWF assimilated ozone fields leads to consistent results, that are to a great extent compatible with those obtained from the comparison with ground-based measurements. Excellent agreement in the full vertical range of the comparison is shown with respect to collocated ozone data from stratospheric aircraft and balloon instruments, that was mostly obtained in very good spatial and temporal coincidence with MIPAS scans. This might suggest that the larger differences observed in the upper troposphere and lowermost stratosphere with respect to collocated ground-based and satellite O3 data are only partly due to a degradation of MIPAS data quality. They should be rather largely ascribed to the natural variability of these altitude regions and to other components of the comparison errors. By combining the results of this large number of validation data sets we derived a general assessment of MIPAS v4.61 and v4.62 ozone data quality. A clear indication of the validity of MIPAS O3 vertical profiles is obtained for most of the stratosphere, where the mean relative difference with the individual correlative data sets is always lower than 10%. Furthermore, these differences always fall within the combined systematic error (from 1 hPa to 50 hPa) and the standard deviation is fully consistent with the random error of the comparison (from 1 hPa to ~30–40 hPa). A degradation in the quality of the agreement is generally observed in the lower stratosphere and upper troposphere, with biases up to 25% at 100 hPa and standard deviation of the global mean differences up to three times larger than the combined random error in the range 50–100 hPa. The larger differences observed at the bottom end of MIPAS retrieved profiles can be associated, as already noticed, to the effects of stronger atmospheric gradients in the UTLS that are perceived differently by the various measurement techniques. However, further components that may degrade the results of the comparison at lower altitudes can be identified as potentially including cloud contamination, which is likely not to have been fully filtered using the current settings of the MIPAS cloud detection algorithm, and in the linear approximation of the forward model that was used for the climatological estimate of systematic error components. The latter, when affecting systematic contributions with a random variability over the spatial and temporal scales of global averages, might result in an underestimation of the random error of the comparison and add up to other error sources, such as the possible underestimates of the p and T error propagation based on the assumption of a 1 K and 2% uncertainties, respectively, on MIPAS temperature and pressure retrievals. At pressure lower than 1 hPa, only a small fraction of the selected validation data set provides correlative ozone data of adequate quality and it is difficult to derive quantitative conclusions about the performance of MIPAS O3 retrieval for the topmost layers.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-04-17
    Description: Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. The product version 4.61/4.62 for the observation period between July 2002 and March 2004 is validated by comparisons with a number of independent observations from ground-based stations, aircraft/balloon campaigns, and satellites. Individual HNO3 profiles of the ESA MIPAS level-2 product show good agreement with those of MIPAS-B and MIPAS-STR (the balloon and aircraft version of MIPAS, respectively), and the balloon-borne infrared spectrometers MkIV and SPIRALE, mostly matching the reference data within the combined instrument error bars. In most cases differences between the correlative measurement pairs are less than 1 ppbv (5–10%) throughout the entire altitude range up to about 38 km (~6 hPa), and below 0.5 ppbv (15–20% or more) above 30 km (~17 hPa). However, differences up to 4 ppbv compared to MkIV have been found at high latitudes in December 2002 in the presence of polar stratospheric clouds. The degree of consistency is further largely affected by the temporal and spatial coincidence, and differences of 2 ppbv may be observed between 22 and 26 km (~50 and 30 hPa) at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Similar features are also observed in the mean differences of the MIPAS ESA HNO3 VMRs with respect to the ground-based FTIR measurements at five stations, aircraft-based SAFIRE-A and ASUR, and the balloon campaign IBEX. The mean relative differences between the MIPAS and FTIR HNO3 partial columns are within ±2%, comparable to the MIPAS systematic error of ~2%. %This should be the systematic error without spectroscopy since the ground-based data were retrieved using the same version of the HITRAN database. For the vertical profiles, the biases between the MIPAS and FTIR data are generally below 10% in the altitudes of 10 to 30 km. The MIPAS and SAFIRE chem{HNO_3} data generally match within their total error bars for the mid and high latitude flights, despite the larger atmospheric inhomogeneities that characterize the measurement scenario at higher latitudes. The MIPAS and ASUR comparison reveals generally good agreements better than 10–13% at 20–34 km. The MIPAS and IBEX measurements agree reasonably well (mean relative differences within ±15%) between 17 and 32 km. Statistical comparisons of the MIPAS profiles correlated with those of Odin/SMR, ILAS-II, and ACE-FTS generally show good consistency. The mean differences averaged over individual latitude bands or all bands are within the combined instrument errors, and generally within 1, 0.5, and 0.3 ppbv between 10 and 40 km (~260 and 4.5 hPa) for Odin/SMR, ILAS-II, and ACE-FTS, respectively. The standard deviations of the differences are between 1 to 2 ppbv. The standard deviations for the satellite comparisons and for almost all other comparisons are generally larger than the estimated measurement uncertainty. This is associated with the temporal and spatial coincidence error and the horizontal smoothing error which are not taken into account in our error budget. Both errors become large when the spatial variability of the target molecule is high.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-02-21
    Description: The Atmospheric Chemistry Experiment (ACE), also known as SCISAT, was launched on 12 August 2003, carrying two instruments that measure vertical profiles of atmospheric constituents using the solar occultation technique. One of these instruments, the ACE Fourier Transform Spectrometer (ACE-FTS), is measuring volume mixing ratio (VMR) profiles of nitrous oxide (N2O) from the upper troposphere to the lower mesosphere at a vertical resolution of about 3–4 km. In this study, the quality of the ACE-FTS version 2.2 N2O data is assessed through comparisons with coincident measurements made by other satellite, balloon-borne, aircraft, and ground-based instruments. These consist of vertical profile comparisons with the SMR, MLS, and MIPAS satellite instruments, multiple aircraft flights of ASUR, and single balloon flights of SPIRALE and FIRS-2, and partial column comparisons with a network of ground-based Fourier Transform InfraRed spectrometers (FTIRs). Overall, the quality of the ACE-FTS version 2.2 N2O VMR profiles is good over the entire altitude range from 5 to 60 km. Between 6 and 30 km, the mean absolute differences for the satellite comparisons lie between −42 ppbv and +17 ppbv, with most within ±20 ppbv. This corresponds to relative deviations from the mean that are within ±15%, except for comparisons with MIPAS near 30 km, for which they are as large as 22.5%. Between 18 and 30 km, the mean absolute differences are generally within ±10 ppbv, again excluding the aircraft and balloon comparisons. From 30 to 60 km, the mean absolute differences are within ±4 ppbv, and are mostly between −2 and +1 ppbv. Given the small N2O VMR in this region, the relative deviations from the mean are therefore large at these altitudes, with most suggesting a negative bias in the ACE-FTS data between 30 and 50 km. In the comparisons with the FTIRs, the mean relative differences between the ACE-FTS and FTIR partial columns are within ±6.6% for eleven of the twelve contributing stations. This mean relative difference is negative at ten stations, suggesting a small negative bias in the ACE-FTS partial columns over the altitude regions compared. Excellent correlation (R=0.964) is observed between the ACE-FTS and FTIR partial columns, with a slope of 1.01 and an intercept of −0.20 on the line fitted to the data.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2008-02-18
    Description: Hydrogen chloride (HCl) and hydrogen fluoride (HF) are respectively the main chlorine and fluorine reservoirs in the Earth's stratosphere. Their buildup resulted from the intensive use of man-made halogenated source gases, in particular CFC-11 (CCl3F) and CFC-12 (CCl2F2), during the second half of the 20th century. It is important to continue monitoring the evolution of these source gases and reservoirs, in support of the Montreal Protocol and also indirectly of the Kyoto Protocol. The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) is a space-based instrument that has been performing regular solar occultation measurements of over 30 atmospheric gases since early 2004. In this validation paper, the HCl, HF, CFC-11 and CFC-12 version 2.2 profile data products retrieved from ACE-FTS measurements are evaluated. Volume mixing ratio profiles have been compared to observations made from space by MLS and HALOE, and from stratospheric balloons by SPIRALE, FIRS-2 and Mark-IV. Partial columns derived from the ACE-FTS data were also compared to column measurements from ground-based Fourier transform instruments operated at 12 sites. ACE-FTS data recorded from March 2004 to August 2007 have been used for the comparisons. These data are representative of a variety of atmospheric and chemical situations, with sounded air masses extending from the winter vortex to summer sub-tropical conditions. Typically, the ACE-FTS products are available in the 10–50 km altitude range for HCl and HF, and in the 7–20 and 7–25 km ranges for CFC-11 and CFC-12, respectively. For both reservoirs, comparison results indicate an agreement generally better than 5–10%, when accounting for the known offset affecting HALOE measurements of HCl and HF. Larger positive differences are however found for comparisons with single profiles from FIRS-2 and SPIRALE. For CFCs, the few coincident measurements available suggest that the differences probably remain within ±20%.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-02-08
    Description: The Atmospheric Chemistry Experiment (ACE) satellite was launched on 12 August 2003. Its two instruments measure vertical profiles of over 30 atmospheric trace gases by analyzing solar occultation spectra in the ultraviolet/visible and infrared wavelength regions. The reservoir gases HNO3, ClONO2, and N2O5 are three of the key species provided by the primary instrument, the ACE Fourier Transform Spectrometer (ACE-FTS). This paper describes the ACE-FTS version 2.2 data products, including the N2O5 update, for the three species and presents validation comparisons with available observations. We have compared volume mixing ratio (VMR) profiles of HNO3, ClONO2, and N2O5 with measurements by other satellite instruments (SMR, MLS, MIPAS), aircraft measurements (ASUR), and single balloon-flights (SPIRALE, FIRS-2). Partial columns of HNO3 and ClONO2 were also compared with measurements by ground-based Fourier Transform Infrared (FTIR) spectrometers. Overall the quality of the ACE-FTS v2.2 HNO3 VMR profiles is good from 18 to 35 km. For the statistical satellite comparisons, the mean absolute differences are generally within ±1 ppbv (±20%) from 18 to 35 km. For MIPAS and MLS comparisons only, mean relative differences lie within ±10% between 10 and 36 km. ACE-FTS HNO3 partial columns (~15–30 km) show a slight negative bias of −1.3% relative to the ground-based FTIRs at latitudes ranging from 77.8° S–76.5° N. Good agreement between ACE-FTS ClONO2 and MIPAS, using the Institut für Meteorologie und Klimaforschung and Instituto de Astrofísica de Andalucía (IMK-IAA) data processor is seen. Mean absolute differences are typically within ±0.01 ppbv between 16 and 27 km and less than +0.09 ppbv between 27 and 34 km. The ClONO2 partial column comparisons show varying degrees of agreement, depending on the location and the quality of the FTIR measurements. Good agreement was found for the comparisons with the midlatitude Jungfraujoch partial columns for which the mean relative difference is 4.7%. ACE-FTS N2O5 has a low bias relative to MIPAS IMK-IAA, reaching −0.25 ppbv at the altitude of the N2O5 maximum (around 30 km). Mean absolute differences at lower altitudes (16–27 km) are typically −0.05 ppbv for MIPAS nighttime and ±0.02 ppbv for MIPAS daytime measurements.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2006-06-08
    Description: Total column amounts of CO, CH4, CO2 and N2O retrieved from SCIAMACHY nadir observations in its near-infrared channels have been compared to data from a ground-based quasi-global network of Fourier-transform infrared (FTIR) spectrometers. The SCIAMACHY data considered here have been produced by three different retrieval algorithms, WFM-DOAS (version 0.5 for CO and CH4 and version 0.4 for CO2 and N2O), IMAP-DOAS (version 1.1 and 0.9 (for CO)) and IMLM (version 6.3) and cover the January to December 2003 time period. Comparisons have been made for individual data, as well as for monthly averages. To maximize the number of reliable coincidences that satisfy the temporal and spatial collocation criteria, the SCIAMACHY data have been compared with a temporal 3rd order polynomial interpolation of the ground-based data. Particular attention has been given to the question whether SCIAMACHY observes correctly the seasonal and latitudinal variability of the target species. The present results indicate that the individual SCIAMACHY data obtained with the actual versions of the algorithms have been significantly improved, but that the quality requirements, for estimating emissions on regional scales, are not yet met. Nevertheless, possible directions for further algorithm upgrades have been identified which should result in more reliable data products in a near future.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-09-21
    Description: Nitric acid (HNO3) is one of the key products that are operationally retrieved by the European Space Agency (ESA) from the emission spectra measured by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) onboard ENVISAT. The product version 4.61/4.62 for the observation period between July 2002 and March 2004 is validated by comparisons with a number of independent observations from ground-based stations, aircraft/balloon campaigns, and satellites. Individual HNO3 profiles of the ESA MIPAS level-2 product show good agreement with those of MIPAS-B and MIPAS-STR (the balloon and aircraft version of MIPAS, respectively), and the balloon-borne infrared spectrometers MkIV and SPIRALE, mostly matching the reference data within the combined instrument error bars. In most cases differences between the correlative measurement pairs are less than 1 ppbv (5–10%) throughout the entire altitude range up to about 38 km (~6 hPa), and below 0.5 ppbv (15–20% or more) above 30 km (~17 hPa). However, differences up to 4 ppbv compared to MkIV have been found at high latitudes in December 2002 in the presence of polar stratospheric clouds. The degree of consistency is further largely affected by the temporal and spatial coincidence, and differences of 2 ppbv may be observed between 22 and 26 km (~50 and 30 hPa) at high latitudes near the vortex boundary, due to large horizontal inhomogeneity of HNO3. Similar features are also observed in the mean differences of the MIPAS ESA HNO3 VMRs with respect to the ground-based FTIR measurements at five stations, aircraft-based SAFIRE-A and ASUR, and the balloon campaign IBEX. The mean relative differences between the MIPAS and FTIR HNO3 partial columns are within ±2%, comparable to the MIPAS systematic error of ~2%. For the vertical profiles, the biases between the MIPAS and FTIR data are generally below 10% in the altitudes of 10 to 30 km. The MIPAS and SAFIRE HNO3 data generally match within their total error bars for the mid and high latitude flights, despite the larger atmospheric inhomogeneities that characterize the measurement scenario at higher latitudes. The MIPAS and ASUR comparison reveals generally good agreements better than 10–13% at 20–34 km. The MIPAS and IBEX measurements agree reasonably well (mean relative differences within ±15%) between 17 and 32 km. Statistical comparisons of the MIPAS profiles correlated with those of Odin/SMR, ILAS-II, and ACE-FTS generally show good consistency. The mean differences averaged over individual latitude bands or all bands are within the combined instrument errors, and generally within 1, 0.5, and 0.3 ppbv between 10 and 40 km (~260 and 4.5 hPa) for Odin/SMR, ILAS-II, and ACE-FTS, respectively. The standard deviations of the differences are between 1 to 2 ppbv. The standard deviations for the satellite comparisons and for almost all other comparisons are generally larger than the estimated measurement uncertainty. This is associated with the temporal and spatial coincidence error and the horizontal smoothing error which are not taken into account in our error budget. Both errors become large when the spatial variability of the target molecule is high.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2007-01-23
    Description: Within the framework of the Network for Detection of Atmospheric Composition Change (NDACC), regular ground-based Fourier transform infrared (FTIR) measurements of many species are performed at several locations. Inversion schemes provide vertical profile information and characterization of the retrieved products which are therefore relevant for contributing to the validation of MIPAS profiles in the stratosphere and upper troposphere. We have focused on the species HNO3 and N2O at 5 NDACC-sites distributed in both hemispheres, i.e., Jungfraujoch (46.5° N) and Kiruna (68° N) for the northern hemisphere, and Wollongong (34° S), Lauder (45° S) and Arrival Heights (78° S) for the southern hemisphere. These ground-based data have been compared with MIPAS offline profiles (v4.61) for the year 2003, collocated within 1000 km around the stations, in the lower to middle stratosphere. To get around the spatial collocation problem, comparisons have also been made between the same ground-based FTIR data and the corresponding profiles resulting from the stratospheric 4D-VAR data assimilation system BASCOE constrained by MIPAS data. This paper discusses the results of the comparisons and the usefullness of using BASCOE profiles as proxies for MIPAS data. It shows good agreement between MIPAS and FTIR N2O partial columns: the biases are below 5% for all the stations and the standard deviations are below 7% for the three mid-latitude stations, and below 10% for the high latitude ones. The comparisons with BASCOE partial columns give standard deviations below 4% for the mid-latitude stations to less than 8% for the high latitude ones. After making some corrections to take into account the known bias due to the use of different spectroscopic parameters, the comparisons of HNO3 partial columns show biases below 3% and standard deviations below 15% for all the stations except Arrival Heights (bias of 5%, standard deviation of 21%). The results for this species, which has a larger spatial variability, highlight the necessity of defining appropriate collocation criteria and of accounting for the spread of the observed airmasses. BASCOE appears to have more deficiencies in producing proxies of MIPAS HNO3 profiles compared to N2O, but the obtained standard deviation of less than 10% between BASCOE and FTIR is reasonable. Similar results on profiles comparisons are also shown in the paper, in addition to partial column ones.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-09-21
    Description: The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), on-board the European ENVIronmental SATellite (ENVISAT) launched on 1 March 2002, is a middle infrared Fourier Transform spectrometer measuring the atmospheric emission spectrum in limb sounding geometry. The instrument is capable to retrieve the vertical distribution of temperature and trace gases, aiming at the study of climate and atmospheric chemistry and dynamics, and at applications to data assimilation and weather forecasting. MIPAS operated in its standard observation mode for approximately two years, from July 2002 to March 2004, with scans performed at nominal spectral resolution of 0.025 cm−1 and covering the altitude range from the mesosphere to the upper troposphere with relatively high vertical resolution (about 3 km in the stratosphere). Only reduced spectral resolution measurements have been performed subsequently. MIPAS data were re-processed by ESA using updated versions of the Instrument Processing Facility (IPF v4.61 and v4.62) and provided a complete set of level-2 operational products (geo-located vertical profiles of temperature and volume mixing ratio of H2O, O3, HNO3, CH4, N2O and NO2) with quasi continuous and global coverage in the period of MIPAS full spectral resolution mission. In this paper, we report a detailed description of the validation of MIPAS-ENVISAT operational ozone data, that was based on the comparison between MIPAS v4.61 (and, to a lesser extent, v4.62) O3 VMR profiles and a comprehensive set of correlative data, including observations from ozone sondes, ground-based lidar, FTIR and microwave radiometers, remote-sensing and in situ instruments on-board stratospheric aircraft and balloons, concurrent satellite sensors and ozone fields assimilated by the European Center for Medium-range Weather Forecasting. A coordinated effort was carried out, using common criteria for the selection of individual validation data sets, and similar methods for the comparisons. This enabled merging the individual results from a variety of independent reference measurements of proven quality (i.e. well characterized error budget) into an overall evaluation of MIPAS O3 data quality, having both statistical strength and the widest spatial and temporal coverage. Collocated measurements from ozone sondes and ground-based lidar and microwave radiometers of the Network for the Detection Atmospheric Composition Change (NDACC) were selected to carry out comparisons with time series of MIPAS O3 partial columns and to identify groups of stations and time periods with a uniform pattern of ozone differences, that were subsequently used for a vertically resolved statistical analysis. The results of the comparison are classified according to synoptic and regional systems and to altitude intervals, showing a generally good agreement within the comparison error bars in the upper and middle stratosphere. Significant differences emerge in the lower stratosphere and are only partly explained by the larger contributions of horizontal and vertical smoothing differences and of collocation errors to the total uncertainty. Further results obtained from a purely statistical analysis of the same data set from NDACC ground-based lidar stations, as well as from additional ozone soundings at middle latitudes and from NDACC ground-based FTIR measurements, confirm the validity of MIPAS O3 profiles down to the lower stratosphere, with evidence of larger discrepancies at the lowest altitudes. The validation against O3 VMR profiles using collocated observations performed by other satellite sensors (SAGE II, POAM III, ODIN-SMR, ACE-FTS, HALOE, GOME) and ECMWF assimilated ozone fields leads to consistent results, that are to a great extent compatible with those obtained from the comparison with ground-based measurements. Excellent agreement in the full vertical range of the comparison is shown with respect to collocated ozone data from stratospheric aircraft and balloon instruments, that was mostly obtained in very good spatial and temporal coincidence with MIPAS scans. This might suggest that the larger differences observed in the upper troposphere and lowermost stratosphere with respect to collocated ground-based and satellite O3 data are only partly due to a degradation of MIPAS data quality. They should be rather largely ascribed to the natural variability of these altitude regions and to other components of the comparison errors. By combining the results of this large number of validation data sets we derived a general assessment of MIPAS v4.61 and v4.62 ozone data quality. A clear indication of the validity of MIPAS O3 vertical profiles is obtained for most of the stratosphere, where the mean relative difference with the individual correlative data sets is always lower than ±10%. Furthermore, these differences always fall within the combined systematic error (from 1 hPa to 50 hPa) and the standard deviation is fully consistent with the random error of the comparison (from 1 hPa to ~30–40 hPa). A degradation in the quality of the agreement is generally observed in the lower stratosphere and upper troposphere, with biases up to 25% at 100 hPa and standard deviation of the global mean differences up to three times larger than the combined random error in the range 50–100 hPa. The larger differences observed at the bottom end of MIPAS retrieved profiles can be associated, as already noticed, to the effects of stronger atmospheric gradients in the UTLS that are perceived differently by the various measurement techniques. However, further components that may degrade the results of the comparison at lower altitudes can be identified as potentially including cloud contamination, which is likely not to have been fully filtered using the current settings of the MIPAS cloud detection algorithm, and in the linear approximation of the forward model that was used for the a priori estimate of systematic error components. The latter, when affecting systematic contributions with a random variability over the spatial and temporal scales of global averages, might result in an underestimation of the random error of the comparison and add up to other error sources, such as the possible underestimates of the p and T error propagation based on the assumption of a 1 K and 2% uncertainties, respectively, on MIPAS temperature and pressure retrievals. At pressure lower than 1 hPa, only a small fraction of the selected validation data set provides correlative ozone data of adequate quality and it is difficult to derive quantitative conclusions about the performance of MIPAS O3 retrieval for the topmost layers.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-04-12
    Description: Time series of total column abundances of hydrogen chloride (HCl), chlorine nitrate (ClONO2), and hydrogen fluoride (HF) were determined from ground-based Fourier transform infrared (FTIR) spectra recorded at 17 sites belonging to the Network for the Detection of Atmospheric Composition Change (NDACC) and located between 80.05° N and 77.82° S. By providing such a near-global overview on ground-based measurements of the two major stratospheric chlorine reservoir species, HCl and ClONO2, the present study is able to confirm the decrease of the atmospheric inorganic chlorine abundance during the last few years. This decrease is expected following the 1987 Montreal Protocol and its amendments and adjustments, where restrictions and a subsequent phase-out of the prominent anthropogenic chlorine source gases (solvents, chlorofluorocarbons) were agreed upon to enable a stabilisation and recovery of the stratospheric ozone layer. The atmospheric fluorine content is expected to be influenced by the Montreal Protocol, too, because most of the banned anthropogenic gases also represent important fluorine sources. But many of the substitutes to the banned gases also contain fluorine so that the HF total column abundance is expected to have continued to increase during the last few years. The measurements are compared with calculations from five different models: the two-dimensional Bremen model, the two chemistry-transport models KASIMA and SLIMCAT, and the two chemistry-climate models EMAC and SOCOL. Thereby, the ability of the models to reproduce the absolute total column amounts, the seasonal cycles, and the temporal evolution found in the FTIR measurements is investigated and inter-compared. This is especially interesting because the models have different architectures. The overall agreement between the measurements and models for the total column abundances and the seasonal cycles is good. Linear trends of HCl, ClONO2, and HF are calculated from both measurement and model time series data, with a focus on the time range 2000–2009. This period is chosen because from most of the measurement sites taking part in this study, data are available during these years. The precision of the trends is estimated with the bootstrap resampling method. The sensitivity of the trend results with respect to the fitting function, the time of year chosen and time series length is investigated, as well as a bias due to the irregular sampling of the measurements. The measurements and model results investigated here agree qualitatively on a decrease of the chlorine species by around 1% yr−1. The models simulate an increase of HF of around 1% yr−1. This also agrees well with most of the measurements, but some of the FTIR series in the Northern Hemisphere show a stabilisation or even a decrease in the last few years. In general, for all three gases, the measured trends vary more strongly with latitude and hemisphere than the modelled trends. Relative to the FTIR measurements, the models tend to underestimate the decreasing chlorine trends and to overestimate the fluorine increase in the Northern Hemisphere. At most sites, the models simulate a stronger decrease of ClONO2 than of HCl. In the FTIR measurements, this difference between the trends of HCl and ClONO2 depends strongly on latitude, especially in the Northern Hemisphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...