ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-05-13
    Description: The Global Positioning System – Radio Occultation (GPS-RO) observations from FormoSat-3 ∕ COSMIC are used to comprehend the global distribution of equatorial plasma bubbles which are characterized by depletion regions of plasma in the F region of the ionosphere. Plasma bubbles that cause intense scintillation of the radio signals are identified based on the S4 index derived from the 1 Hz raw signal-to-noise ratio measurements between 2007 and 2017. The analyses revealed that bubbles influenced by background plasma density occurred along the geomagnetic equator and had an occurrence peak around the dip equator during high solar activity. The peak shifted between the African and American sectors, depending on different solar conditions. Plasma bubbles usually developed around 19:00 local time (LT), with maximum occurrence around 21:00 LT during solar maximum and ∼22:00 LT during solar minimum. The occurrence of bubbles showed a strong dependence on longitudes, seasons, and solar cycle with the peak occurrence rate in the African sector around the March equinox during high solar activity, which is consistent with previous studies. The GPS-RO technique allows an extended analysis of the altitudinal distribution of global equatorial plasma bubbles obtained from high vertical resolution profiles, thus making it a convenient tool which could be further used with other techniques to provide a comprehensive view of such ionospheric irregularities.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-20
    Description: Atmospheric climate monitoring requires observations of high quality that conform to the criteria of the Global Climate Observing System (GCOS). Radio occultation (RO) data based on Global Positioning System (GPS) signals are available since 2001 from several satellite missions with global coverage, high accuracy, and high vertical resolution in the troposphere and lower stratosphere. We assess the consistency and long-term stability of multi-satellite RO observations for use as climate data records. As a measure of long-term stability, we quantify the structural uncertainty of RO data products arising from different processing schemes. We analyze atmospheric variables from bending angle to temperature for four RO missions, CHAMP, Formosat-3/COSMIC, GRACE, and Metop, provided by five data centers. The comparisons are based on profile-to-profile differences aggregated to monthly medians. Structural uncertainty in trends is found to be lowest from 8 to 25 km of altitude globally for all inspected RO variables and missions. For temperature, it is
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-31
    Description: Ground-based GNSS (Global Navigation Satellite System) has efficiently been used since the 1990s as a meteorological observing system. Recently scientists have used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-Interim) data and meteorological measurements. We aim to evaluate climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: (1) estimated from ground-based GNSS observations using the method of precise point positioning, (2) inferred from ERA-Interim reanalysis data, and (3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods: the first applies least squares to deseasonalized time series and the second uses the Theil–Sen estimator. The trends estimated at 113 GNSS sites, with 10 to 19 years temporal coverage, vary between −1.5 and 2.3 mm decade−1 with standard deviations below 0.25 mm decade−1. These results were validated by estimating the trends from ERA-Interim data over the same time windows, which show similar values. These values of the trend depend on the length and the variations of the time series. Therefore, to give a mean value of the PWV trend over Germany, we estimated the trends using ERA-Interim spanning from 1991 to 2016 (26 years) at 227 synoptic stations over Germany. The ERA-Interim data show positive PWV trends of 0.33 ± 0.06 mm decade−1 with standard errors below 0.03 mm decade−1. The increment in PWV varies between 4.5 and 6.5 % per degree Celsius rise in temperature, which is comparable to the theoretical rate of the Clausius–Clapeyron equation.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-09-10
    Description: An analysis of processing settings impact on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 GNSS reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using Precise Point Positioning with the G-Nut/Tefnut software. The impact of the gradient mapping function, elevation cut-off angle, GNSS constellation and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather prediction models. Generally, all the solutions in the post-processing mode provided a robust tropospheric gradient estimation with a clear relation to real weather conditions. The quality of tropospheric gradient estimates in real-time mode mainly depends on the actual quality of the real-time orbits and clocks. Best results were achieved using the 3° elevation angle cut-off and a combined GPS+GLONASS constellation. Systematic effects of up to 0.3mm were observed in estimated tropospheric gradients when using different gradient mapping functions which depend on the applied observation elevation-dependent weighting. While the latitudinal troposphere tilting causes a systematic difference in the north gradient component on a global scale, large local wet gradients pointing to a direction of increased humidity cause systematic differences in both gradient components depending on the gradient direction.
    Electronic ISSN: 2568-6402
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-25
    Description: The emerging technique of GPS Radio Occultation has been used to detect the ionospheric irregularities prominent in the F-region known as equatorial plasma bubbles. The plasma bubbles are characterized by depreciated regions of electron density. For investigating the plasma bubbles, a nine-year (2008–2016) long time series of signal-to-noise ratio data are used from the vertical GPS radio occultation profiles. The variation in the signal-to-noise ratio of the GPS signals can be linked to vertical changes in the electron density profiles that mainly occur in line with the irregularities in the Earth's ionosphere. The analysis revealed that the F-region irregularities, associated with plasma bubbles occur mainly post sunset close to Earth's geomagnetic equator. Dependence on the solar cycle as well as distinctive seasonal variation is observed when analyzed for different years. In contrast to the other ionospheric remote sensing methods, GPS Radio Occultation technique uniquely personifies the activity of the plasma bubbles based on altitude resolution on a global scale.
    Electronic ISSN: 2568-6402
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-18
    Description: An analysis of processing settings impacts on estimated tropospheric gradients is presented. The study is based on the benchmark data set collected within the COST GNSS4SWEC action with observations from 430 Global Navigation Satellite Systems (GNSS) reference stations in central Europe for May and June 2013. Tropospheric gradients were estimated in eight different variants of GNSS data processing using precise point positioning (PPP) with the G-Nut/Tefnut software. The impacts of the gradient mapping function, elevation cut-off angle, GNSS constellation, observation elevation-dependent weighting and real-time versus post-processing mode were assessed by comparing the variants by each to other and by evaluating them with respect to tropospheric gradients derived from two numerical weather models (NWMs). Tropospheric gradients estimated in post-processing GNSS solutions using final products were in good agreement with NWM outputs. The quality of high-resolution gradients estimated in (near-)real-time PPP analysis still remains a challenging task due to the quality of the real-time orbit and clock corrections. Comparisons of GNSS and NWM gradients suggest the 3∘ elevation angle cut-off and GPS+GLONASS constellation for obtaining optimal gradient estimates provided precise models for antenna-phase centre offsets and variations, and tropospheric mapping functions are applied for low-elevation observations. Finally, systematic errors can affect the gradient components solely due to the use of different gradient mapping functions, and still depending on observation elevation-dependent weighting. A latitudinal tilting of the troposphere in a global scale causes a systematic difference of up to 0.3 mm in the north-gradient component, while large local gradients, usually pointing in a direction of increasing humidity, can cause differences of up to 1.0 mm (or even more in extreme cases) in any component depending on the actual direction of the gradient. Although the Bar-Sever gradient mapping function provided slightly better results in some aspects, it is not possible to give any strong recommendation on the gradient mapping function selection.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-23
    Description: Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we compare the temporal trends estimated from GNSS time series with those estimated from European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements. We aim at evaluating climate evolution in Germany by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim reanalysis data, and 3) determined based on daily in situ measurements of temperature and relative humidity. The other relevant atmospheric parameters are available from surface measurements of meteorological stations or derived from ERA-Interim. The trends are estimated using two methods, the first applies least squares to seasonally-adjusted time series and the second using the Theil-Sen estimator. The trends estimated at 113 GNSS sites, with 10 and 19 year temporal coverage, varies between −1.5 and 2 mm/decade with standard deviations below 0.25 mm/decade. These values depend on the length and the variations of the time series. Therefore, we estimated the PWV trends using ERA-Interim and surface measurements spanning from 1991 to 2016 (26 years) at synoptic 227 stations over Germany. The former shows positive PWV trends below 0.5 mm/decade while the latter shows positive trends below 0.9 mm/decade with standard deviations below 0.03 mm/decade. The estimated PWV trends correlate with the temperature trends.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-13
    Description: The recent dramatic development of multi-GNSS (Global Navigation Satellite System) constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. Significant improvement on positioning accuracy, reliability, as well as convergence time with the multi-GNSS fusion can be observed in comparison with the single-system processing like GPS (Global Positioning System). In this study, we develop a numerical weather model (NWM)-constrained precise point positioning (PPP) processing system to improve the multi-GNSS precise positioning. Tropospheric delay parameters which are derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis are applied to the multi-GNSS PPP, a combination of four systems: GPS, GLONASS, Galileo, and BeiDou. Observations from stations of the IGS (International GNSS Service) Multi-GNSS Experiments (MGEX) network are processed, with both the standard multi-GNSS PPP and the developed NWM-constrained multi-GNSS PPP processing. The high quality and accuracy of the tropospheric delay parameters derived from ECMWF are demonstrated through comparison and validation with the IGS final tropospheric delay products. Compared to the standard PPP solution, the convergence time is shortened by 20.0, 32.0, and 25.0 % for the north, east, and vertical components, respectively, with the NWM-constrained PPP solution. The positioning accuracy also benefits from the NWM-constrained PPP solution, which was improved by 2.5, 12.1, and 18.7 % for the north, east, and vertical components, respectively.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-05-20
    Description: Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research. In this work, we use time series from GNSS, European Center for Medium-Range Weather Forecasts Reanalysis (ERA-Interim) data, and meteorological measurements to evaluate climate evolution in Central Europe. The assessment of climate change requires monitoring of different atmospheric variables such as temperature, PWV, precipitation, and snow cover. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using meteorological measurements. The results show a positive trend in the PWV time series at more than 60 GNSS sites with an increase of 0.3–0.6 mm/decade. In this paper, we compare the results of three stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-16
    Description: The recent dramatic development of multi-GNSS (Global Navigation Satellite Systems) constellations brings great opportunities and potential for more enhanced precise positioning, navigation, timing, and other applications. Significant improvement on positioning accuracy, reliability, as well as convergence time with the multi-GNSS fusion can be observed in comparison with the single-system processing like GPS (Global Positioning System). In this study, we develop a numerical weather model (NWM)-constrained PPP processing system to improve the multi-GNSS precise positioning. Tropospheric delay parameters which are derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis are applied to the multi-GNSS PPP, a combination of four systems: GPS, GLONASS, Galileo, and BeiDou. Observations from stations of the IGS (International GNSS Service) Multi-GNSS Experiments (MGEX) network are processed, with both the standard multi-GNSS PPP and the developed NWM-constrained multi-GNSS PPP processing. The high quality and accuracy of the tropospheric delay parameters derived from ECMWF are demonstrated through comparison and validation with the IGS final tropospheric delay products. Compared to the standard PPP solution, the convergence time is shortened by 32.0 %, 37.5 %, and 25.0 % for the north, east, and vertical components, respectively, with the NWM-constrained PPP solution. The positioning accuracy also benefits from the NWM-constrained PPP solution, which gets improved by 2.5 %, 12.1 %, and 18.7 % for the north, east, and vertical components, respectively.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...