ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-24
    Description: The Torngat Mountains National Park, northern Labrador, Canada, contains more than 120 small glaciers: the only remaining glaciers in continental northeast North America. These small cirque glaciers exist in a unique topo-climatic setting, experiencing temperate maritime summer conditions yet very cold and dry winters, and may provide insights into the deglaciation dynamics of similar small glaciers in temperate mountain settings. Due to their size and remote location, very little information exists regarding the health of these glaciers. Just a single study has been published on the contemporary glaciology of the Torngat Mountains, focusing on net mass balances from 1981 to 1984. This paper addresses the extent to which glaciologically relevant climate variables have changed in northern Labrador in concert with 20th-century Arctic warming, and how these changes have affected Torngat Mountain glaciers. Field surveys and remote-sensing analyses were used to measure regional glacier area loss of 27 % from 1950 to 2005, substantial rates of ice surface thinning (up to 6 m yr−1) and volume losses at Abraham, Hidden, and Minaret glaciers, between 2005 and 2011. Glacier mass balances appear to be controlled by variations in winter precipitation and, increasingly, by strong summer and autumn atmospheric warming since the early 1990s, though further observations are required to fully understand mass balance sensitivities. This study provides the first comprehensive contemporary assessment of Labrador glaciers and will inform both regional impact assessments and syntheses of global glacier mass balance.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-04
    Description: Bodies of peatland permafrost were examined at five sites along a 300 km transect spanning the isolated patches permafrost zone in the coastal barrens of southeastern Labrador. Mean annual air temperatures ranged from +1 °C in the south (latitude 51.4° N) to −1.1 °C in the north (53.7° N) while mean ground temperatures at the top of permafrost varied respectively from −0.7 °C to −2.3 °C with shallow active layers (40–60 cm) throughout. Small surface offsets due to wind scouring of snow from the crests of palsas and peat plateaux, and large thermal offsets due to thick peat are critical to permafrost, which is therefore absent in wetland, forested and forest-tundra areas inland, notwithstanding average air temperatures much lower than near the coast. Most permafrost peatland bodies are less than 5 m thick with a maximum of 10 m with steep geothermal gradients. One-dimensional thermal modelling for two sites showed that they are in equilibrium with the current climate, but the permafrost mounds are generally relict and could not form today without the low snow depths that result from a heaved peat surface. Despite the warm permafrost, model predictions using downscaled global warming scenarios (RCP2.6, 4.5 and 8.5) indicate that perennially frozen ground will thaw from the base up and may persist at the southern site until the middle of the 21st Century. At the northern site, permafrost is more resilient, persisting to the 2060s under RCP8.5, the 2090s under RCP4.5, or beyond the 21st century under RCP2.6. Despite evidence of peatland permafrost degradation in the study region, the local-scale modelling suggests that the southern boundary of permafrost may not move as quickly as had previously been thought.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-08-16
    Description: Bodies of peatland permafrost were examined at five sites along a 300 km transect spanning the isolated patches permafrost zone in the coastal barrens of southeastern Labrador. Mean annual air temperatures ranged from +1 ∘C in the south (latitude 51.4∘ N) to −1.1 ∘C in the north (53.7∘ N) while mean ground temperatures at the top of the permafrost varied respectively from −0.7 to −2.3 ∘C with shallow active layers (40–60 cm) throughout. Small surface offsets due to wind scouring of snow from the crests of palsas and peat plateaux, and large thermal offsets due to thick peat are critical to permafrost, which is absent in wetland and forested and forest–tundra areas inland, notwithstanding average air temperatures much lower than near the coast. Most permafrost peatland bodies are less than 5 m thick, with a maximum of 10 m, with steep geothermal gradients. One-dimensional thermal modelling for two sites showed that they are in equilibrium with the current climate, but the permafrost mounds are generally relict and could not form today without the low snow depths that result from a heaved peat surface. Despite the warm permafrost, model predictions using downscaled global warming scenarios (RCP2.6, RCP4.5, and RCP8.5) indicate that perennially frozen ground will thaw from the base up and may persist at the southern site until the middle of the 21st century. At the northern site, permafrost is more resilient, persisting to the 2060s under RCP8.5, the 2090s under RCP4.5, or beyond the 21st century under RCP2.6. Despite evidence of peatland permafrost degradation in the study region, the local-scale modelling suggests that the southern boundary of permafrost may not move north as quickly as previously hypothesized.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...