ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-11-30
    Description: Microbial life in the continental deep biosphere is closely linked to geodynamic processes, yet this interaction is poorly studied. The Cheb Basin in the western Eger Rift (Czech Republic) is an ideal place for such a study because it displays almost permanent seismic activity along active faults with earthquake swarms up to ML 4.5 and intense degassing of mantle-derived CO2 in conduits that show up at the surface in form of mofettes. We hypothesize that microbial life is significantly accelerated in active fault zones and in CO2 conduits, due to increased fluid and substrate flow. To test this hypothesis, pilot hole HJB-1 was drilled in spring 2016 at the major mofette of the Hartoušov mofette field, after extensive pre-drill surveys to optimize the well location. After drilling through a thin caprock-like structure at 78.5 m, a CO2 blowout occurred indicating a CO2 reservoir in the underlying sandy clay. A pumping test revealed the presence of mineral water dominated by Na+, Ca2+, HCO3−, SO42− (Na-Ca-HCO3-SO4 type) having a temperature of 18.6 °C and a conductivity of 6760 µS cm−1. The high content of sulfate (1470 mg L−1) is typical of Carlsbad Spa mineral waters. The hole penetrated about 90 m of Cenozoic sediments and reached a final depth of 108.50 m in Palaeozoic schists. Core recovery was about 85 %. The cored sediments are mudstones with minor carbonates, sandstones and lignite coals that were deposited in a lacustrine environment. Deformation structures and alteration features are abundant in the core. Ongoing studies will show if they result from the flow of CO2-rich fluids or not.
    Print ISSN: 1816-8957
    Electronic ISSN: 1816-3459
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-15
    Description: The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraether (GDGTs) and bulk δ13C 5 measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R'soil ranges from 0.0 to 0.8 across the ESAS, with highest values near shore and decreases offshore. Across the shelf R'soil displays a negative linear correlation with bulk δ13C measurements (r2 = −0.73, p = 〈 0.001). When compared to the GDGT based OC proxy, the Branched and Isoprenoid tetraether (BIT) index, a decoupled (non-linear) behaviour on the shelf was observed, particularly in the Buor-Khaya Bay where the R'soil shows limited 10 variation, whereas the BIT index shows a rapid decline moving away from the Lena River outflow channels. This reflects a balance between delivery and removal of OC from different sources. The good correlation between the hopanoid and bulk terrestrial signal suggests a broad range of hopanoid sources, both fluvial and via coastal erosion whilst GDGTs appear to be primarily sourced via fluvial transport. Analysis of ice complex deposits (ICDs) revealed an average R'soil of 0.5 for the Lena delta, equivalent to that of the Buor-Khaya Bay sediments, whilst ICDs from further East showed higher values (0.6–0.85). Al15 though R'soil correlates more closely with bulk OC than the BIT, our understanding of the endmembers of this system is clearly still incomplete with east-west variations potentially reflecting differences in environmental conditions (e.g. temperature, pH) but other physiological controls on microbial BHP production under psychrophilic conditions are as yet unknown.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-14
    Description: Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 ∘C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore–offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 ∘C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes δ18O and δD, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 ∘C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-06
    Description: The Siberian Arctic contains a globally significant pool of organic carbon (OC) vulnerable to enhanced warming and subsequent release by both fluvial and coastal erosion processes. However, the rate of release, its behaviour in the Arctic Ocean and vulnerability to remineralisation is poorly understood. Here we combine new measurements of microbial biohopanoids including adenosylhopane, a lipid associated with soil microbial communities, with published glycerol dialkyl glycerol tetraethers (GDGTs) and bulk δ13C measurements to improve knowledge of the fate of OC transported to the East Siberian Arctic Shelf (ESAS). The microbial hopanoid-based soil OC proxy R′soil ranges from 0.0 to 0.8 across the ESAS, with highest values nearshore and decreases offshore. Across the shelf R′soil displays a negative linear correlation with bulk δ13C measurements (r2 = −0.73, p =  
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-06
    Description: Warming of the Arctic led to an increase of permafrost temperatures by about 0.3 °C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability and diffusivity and could on the long-term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore-offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 °C. We analysed the in-situ development of bacterial abundance and community composition through total cell counts (TCC), quantitative PCR of bacterial gene abundance and amplicon sequencing, and correlated the microbial community data with temperature, pore water chemistry and sediment physicochemical parameters. On time-scales of centuries, permafrost warming coincided with an overall decreasing microbial abundance while millennia after warming microbial abundance was similar to cold onshore permafrost and DOC content was least. Based on correlation analysis TCC unlike bacterial gene abundance showed a significant rank-based negative correlation with increasing temperature while both TCC and bacterial gene copy numbers showed a negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with pore-water stable isotope signatures and depth, while it showed no correlation with salinity. Microbial community composition showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria which are amongst the microbial taxa that were found to be active in other frozen permafrost environments as well. We suggest that, millennia after permafrost warming by over 10 °C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleo-environment and not a direct effect through warming.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-21
    Description: James Ross Island (JRI) offers the exceptional opportunity to study microbial-driven pedogenesis without the influence of vascular plants or faunal activities (e.g., penguin rookeries). In this study, two soil profiles from JRI (one at Santa Martha Cove – SMC, and another at Brandy Bay – BB) were investigated, in order to gain information about the initial state of soil formation and its interplay with prokaryotic activity, by combining pedological, geochemical and microbiological methods. The soil profiles are similar with respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent windward and leeward locations towards the mainly southwesterly winds. These different positions result in differences in electric conductivity of the soils caused by additional input of bases by sea spray at the windward site and opposing trends in the depth functions of soil pH and electric conductivity. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadetes and Chloroflexi. A shift in the dominant taxa was observed below 20 cm in both soils as well as an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidiferrobacteraceae. This shift is coupled by a change in microstructure. While single/pellicular grain microstructure (SMC) and platy microstructure (BB) are dominant above 20 cm, lenticular microstructure is dominant below 20 cm in both soils. The change in microstructure is caused by frequent freeze–thaw cycles and a relative high water content, and it goes along with a development of the pore spacing and is accompanied by a change in nutrient content. Multivariate statistics revealed the influence of soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution and pedogenic oxide ratios on the overall microbial community structure and explained 49.9 % of its variation. The correlation of the pedogenic oxide ratios with the compositional distribution of microorganisms as well as the relative abundance certain microorganisms such as potentially chemolithotrophic Acidiferrobacteraceae-related OTUs could hint at an interplay between soil-forming processes and microorganisms.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-12-14
    Description: James Ross Island (JRI) offers the exceptional opportunity to study pedogenesis without the influence of vascular plants or faunal activities (e.g. penguin rookeries) in a landscape marking the transition from maritime to continental Antarctica. Here, primarily microbial communities control soil biological processes and affect soil chemical and physical properties in a semiarid region with mean annual precipitation from 200 to 500 mm and mean air temperature below 0 °C. The impact of climate change on soil forming processes in this part of Antarctica and its related microbial processes is unknown. In this study, two soil profiles from JRI (one at St. Martha Cove – SMC, and another at Brandy Bay – BB) were investigated by combining pedological, geochemical and microbiological methods. The soil profiles are similar in respect to topographic position and parent material but are spatially separated by an orographic barrier and therefore represent lee- and windward locations towards the mainly south-westerly winds. Opposing trends in the depth functions of pH and differences in EC-values are caused by additional input of bases by sea spray at BB, the site close to the Prince Gustav Channel. Both soils are classified as Cryosols, dominated by bacterial taxa such as Actinobacteria, Proteobacteria, Acidobacteria, Gemmatimonadates and Chloroflexi. A shift in the dominant taxa in both soils and an increased abundance of multiple operational taxonomic units (OTUs) related to potential chemolithoautotrophic Acidoferrobacteraceae was observed. This shift was accompanied by a change in soil microstructure below 20 cm depth, with potential impact on water availability and matter fluxes. Multivariate statistics revealed correlations between the microbial community structure and soil parameters such as chloride, sulfate, calcium and organic carbon contents, grain size distribution, as well as the pedogenic oxide ratio.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-28
    Description: Warming of the Arctic led to an increase in permafrost temperatures by about 0.3 �C during the last decade. Permafrost warming is associated with increasing sediment water content, permeability, and diffusivity and could in the long term alter microbial community composition and abundance even before permafrost thaws. We studied the long-term effect (up to 2500 years) of submarine permafrost warming on microbial communities along an onshore–offshore transect on the Siberian Arctic Shelf displaying a natural temperature gradient of more than 10 �C. We analysed the in situ development of bacterial abundance and community composition through total cell counts (TCCs), quantitative PCR of bacterial gene abundance, and amplicon sequencing and correlated the microbial community data with temperature, pore water chemistry, and sediment physicochemical parameters. On timescales of centuries, permafrost warming coincided with an overall decreasing microbial abundance, whereas millennia after warming microbial abundance was similar to cold onshore permafrost. In addition, the dissolved organic carbon content of all cores was lowest in submarine permafrost after millennial-scale warming. Based on correlation analysis, TCC, unlike bacterial gene abundance, showed a significant rank-based negative correlation with increasing temperature, while bacterial gene copy numbers showed a strong negative correlation with salinity. Bacterial community composition correlated only weakly with temperature but strongly with the pore water stable isotopes �18O and �D, as well as with depth. The bacterial community showed substantial spatial variation and an overall dominance of Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes, and Proteobacteria, which are amongst the microbial taxa that were also found to be active in other frozen permafrost environments. We suggest that, millennia after permafrost warming by over 10 �C, microbial community composition and abundance show some indications for proliferation but mainly reflect the sedimentation history and paleoenvironment and not a direct effect through warming.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...