ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-07-03
    Description: After the launch of the Sentinel-5 Precursor satellite on 13 October 2017, its single payload, the TROPOspheric Monitoring Instrument (TROPOMI), was commissioned for 6 months. In this time the instrument was tested and calibrated extensively. During this phase the geolocation calibration was validated using a dedicated measurement zoom mode. With the help of spacecraft manoeuvres the solar angle dependence of the irradiance radiometry was calibrated for both internal diffusers. This improved the results that were obtained on the ground significantly. Furthermore the orbital and long-term stability was tested for electronic gains, offsets, non-linearity, the dark current and the output of the internal light sources. The CCD output gain of the UV, UVIS and NIR detectors shows drifts over time which can be corrected in the Level 1b (L1b) processor. In-flight measurements also revealed inconsistencies in the radiometric calibration and degradation of the UV spectrometer. Degradation was also detected for the internal solar diffusers. Since the start of the nominal operations (E2) phase in orbit 2818 on 30 April 2018, regularly scheduled calibration measurements on the eclipse side of the orbit are used for monitoring and updates to calibration key data. This article reports on the main results of the commissioning phase, the in-flight calibration and the instrument's stability since launch. Insights from commissioning and in-flight monitoring have led to updates to the L1b processor and its calibration key data. The updated processor is planned to be used for nominal processing from late 2020 on.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-12-04
    Description: The Sentinel-5 Precursor satellite was successfully launched on 13 October 2017, carrying the Tropospheric Monitoring Instrument (TROPOMI) as its single payload. TROPOMI is the next-generation atmospheric sounding instrument, continuing the successes of GOME, SCIAMACHY, OMI, and OMPS, with higher spatial resolution, improved sensitivity, and extended wavelength range. The instrument contains four spectrometers, divided over two modules sharing a common telescope, measuring the ultraviolet, visible, near-infrared, and shortwave infrared reflectance of the Earth. The imaging system enables daily global coverage using a push-broom configuration, with a spatial resolution as low as 7×3.5 km2 in nadir from a Sun-synchronous orbit at 824 km and an Equator crossing time of 13:30 local solar time. This article reports the pre-launch calibration status of the TROPOMI payload as derived from the on-ground calibration effort. Stringent requirements are imposed on the quality of on-ground calibration in order to match the high sensitivity of the instrument. A new methodology has been employed during the analysis of the obtained calibration measurements to ensure the consistency and validity of the calibration. This was achieved by using the production-grade Level 0 to 1b data processor in a closed-loop validation set-up. Using this approach the consistency between the calibration and the L1b product, as well as confidence in the obtained calibration result, could be established. This article introduces this novel calibration approach and describes all relevant calibrated instrument properties as they were derived before launch of the mission. For most of the relevant properties compliance with the calibration requirements could be established, including the knowledge of the instrument spectral and spatial response functions. Partial compliance was established for the straylight correction; especially the out-of-spectral-band correction for the near-infrared channel needs future validation. The absolute radiometric calibration of the radiance and irradiance responsivity is compliant with the high-level mission requirements, but not with the stricter calibration requirements as the available on-ground validation shows. The relative radiometric calibration of the Sun port was non-compliant. The non-compliant subjects will be addressed during the in-flight commissioning phase in the first 6 months following launch.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-21
    Description: We present a new MAX-DOAS profiling algorithm for aerosols and trace gases, BOREAS, which utilizes an iterative solution method including Tikhonov regularization and the optimal estimation technique. The aerosol profile retrieval is based on a novel approach in which the absorption depth of O4 is directly used in order to retrieve extinction coefficient profiles instead of the commonly used perturbation theory method. The retrieval of trace gases is done with the frequently used optimal estimation method but significant improvements are presented on how to deal with wrongly weighted a priori constraints and for scenarios in which the a priori profile is inaccurate. Performance tests are separated into two parts. First, we address the general sensitivity of the retrieval to the example of synthetic data calculated with the radiative transfer model SCIATRAN. In the second part of the study, we demonstrate BOREAS profiling accuracy by validating the results with the help of ancillary measurements carried out during the CINDI-2 campaign in Cabauw, the Netherlands, in 2016. The synthetic sensitivity tests indicate that the regularization between measurement and a priori constraints is insufficient when knowledge of the true state of the atmosphere is poor. We demonstrate a priori pre-scaling and extensive regularization tests as a tool for the optimization of retrieved profiles. The comparison of retrieval results with in situ, ceilometer, NO2 lidar, sonde and long-path DOAS measurements during the CINDI-2 campaign always shows high correlations with coefficients greater than 0.75. The largest differences can be found in the morning hours, when the planetary boundary layer is not yet fully developed and the concentration of trace gases and aerosol, as a result of a low night-time boundary layer having formed, is focused in a shallow, near-surface layer.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-10
    Description: Recent Arctic studies suggest that sea-ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate marine heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature and plankton speciation of the supra-micron (〉 10 μm) particulate organic matter (supra-POM) fraction collected along the Siberian shelf. Supra-POM samples were analysed at bulk (δ13C and Δ14C) and molecular level (CuO oxidation and IP25) while plankton identification established the dominant taxa. In addition, surface water chemical properties were integrated with the plankton dataset to understand the link between plankton composition and environmental conditions. The dual-carbon isotope fingerprint indicates a large variability in the supra-POM distribution while terrestrial biomarkers suggest negligible land-derived input. In the open-waters of the outer Laptev Sea (LS), heterotrophic plankton dominated the assemblages. δ13C and Δ14C suggest that modern terrestrial dissolved organic carbon (DOC) from the Lena river is the primary source of metabolizable carbon which is transferred to the heterotrophic communities via microbial loops. Moving eastwards toward the sea-ice dominated East Siberian Sea (ESS), the system became progressively more autotrophic and dominated by sea-ice and pelagic diatoms which is confirmed. Comparison between δ13C of supra-POM samples and CO2aq concentrations suggests that the carbon isotope fractionation follows the general growth vs CO2aq supply model with the highest δ13C values found in the easternmost, most productive stations. In a warming scenario characterized by enhanced terrestrial release and further sea-ice decline, heterotrophic conditions fuelled by terrestrial DOC will likely persist in the LS while ESS might experience enhanced primary productivity. This will result in a sharp compositional gradient similar to what documented in our semi-synoptic study.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-09-18
    Description: Recent Arctic studies suggest that sea ice decline and permafrost thawing will affect phytoplankton dynamics and stimulate heterotrophic communities. However, in what way the plankton composition will change as the warming proceeds remains elusive. Here we investigate the chemical signature of the plankton-dominated fraction of particulate organic matter (POM) collected along the Siberian Shelf. POM (〉 10 µm) samples were analysed using molecular biomarkers (CuO oxidation and IP25) and dual-carbon isotopes (δ13C and Δ14C). In addition, surface water chemical properties were integrated with the POM (〉 10 µm) dataset to understand the link between plankton composition and environmental conditions. δ13C and Δ14C exhibited a large variability in the POM (〉 10 µm) distribution while the content of terrestrial biomarkers in the POM was negligible. In the Laptev Sea (LS), δ13C and Δ14C of POM (〉 10 µm) suggested a heterotrophic environment in which dissolved organic carbon (DOC) from the Lena River was the primary source of metabolisable carbon. Within the Lena plume, terrestrial DOC probably became part of the food web via bacteria uptake and subsequently transferred to relatively other heterotrophic communities (e.g. dinoflagellates). Moving eastwards toward the sea-ice-dominated East Siberian Sea (ESS), the system became progressively more autotrophic. Comparison between δ13C of POM (〉 10 µm) samples and CO2aq concentrations revealed that the carbon isotope fractionation increased moving towards the easternmost and most productive stations. In a warming scenario characterised by enhanced terrestrial DOC release (thawing permafrost) and progressive sea ice decline, heterotrophic conditions might persist in the LS while the nutrient-rich Pacific inflow will likely stimulate greater primary productivity in the ESS. The contrasting trophic conditions will result in a sharp gradient in δ13C between the LS and ESS, similar to what is documented in our semi-synoptic study.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-03-23
    Description: Hydrolysable organic carbon (OC) comprises a significant component of sedimentary particulate matter transferred from land into oceans via rivers. Its abundance and nature are however not well studied in the arctic river systems, and yet may represent an important pool of carbon whose fate remains unclear in the context of mobilization and related processes associated with changing climate. Here, we examine the molecular composition and source of hydrolysable compounds isolated from surface sediments derived from nine rivers across the pan-Arctic. Bound fatty acids (b-FAs), hydroxy FAs, n-alkane-α, ω-dioic acids (DAs) and phenols were the major components released upon hydrolysis of these sediments. Among them, b-FAs received considerable inputs from bacterial and/or algal sources, whereas ω-hydroxy FAs, mid-chain substituted acids, DAs, and hydrolysable phenols were mainly derived from cutin and suberin of higher plants. We further compared the distribution and fate of suberin- and cutin-derived compounds with those of other terrestrial biomarkers (plant wax lipids and lignin phenols) from the same arctic river sediments and conducted a benchmark assessment of several biomarker-based indicators of OC source and extent of degradation. While suberin-specific biomarkers were positively correlated with plant-derived high-molecular-weight (HMW) FAs, lignin phenols were correlated with cutin-derived compounds. These correlations suggest that, similar to leaf-derived cutin, lignin was mainly derived from litter and surface soil horizons, whereas suberin and HMW FAs incorporated significant inputs from belowground sources (roots and deeper soil). This conclusion is supported by the negative correlation between lignin phenols and the ratio of suberin-to-cutin biomarkers. Furthermore, the molecular composition of investigated biomarkers differed between Eurasian and North American arctic rivers: while lignin dominated in the terrestrial OC of Eurasian river sediments, hydrolysable OC represented a much larger fraction in the sedimentary particles from Colville River. Hence, studies exclusively focusing on either plant wax lipids or lignin phenols will not be able to fully unravel the mobilization and fate of bound OC in the arctic rivers. More comprehensive, multi-molecular investigations are needed to better constrain the land-ocean transfer of carbon in the changing Arctic, including further research on the degradation and transfer of both free and bound components in the arctic river sediments.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-09
    Description: Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC) stored in permafrost (PF) terrain. When permafrost thaws, its OC is remobilized into the (aquatic) environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC.We here present compound-specific deuterium (δ2H) analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (ice complex deposits; ICD) and from thawing Holocene permafrost (from near-surface soils). Bulk geochemistry (%OC; δ13C; %total nitrogen, TN) was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33) and mid- to long-chain n-alkanoic acids (C16 to C30) extracted from both ICD-PF samples (n =  9) and modern vegetation and O-horizon (topsoil-PF) samples (n =  9) from across the northeast Siberian Arctic. Results show that these topsoil-PF samples have higher %OC, higher OC ∕ TN values and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular isotope level, leaf wax biomarker δ2H values are statistically different between topsoil PF and ICD PF. For example, the mean δ2H value of C29 n-alkane was −246 ± 13 ‰ (mean ± SD) for topsoil PF and −280 ± 12 ‰ for ICD PF. With a dynamic isotopic range (difference between two sources) of 34 to 50 ‰; the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can thus serve as endmembers to distinguish between these two sources. We tested this molecular δ2H tracer along with another source-distinguishing approach, dual-carbon (δ13C–Δ14C) isotope composition of bulk OC, for a surface sediment transect in the Laptev Sea. Results show that general offshore patterns along the shelf-slope transect are similar, but the source apportionment between the approaches vary, which may highlight the advantages of either. This study indicates that the application of δ2H leaf wax values has potential to serve as a complementary quantitative measure of the source and differential fate of OC thawed out from different permafrost compartments.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-02-21
    Description: Pleistocene ice complex permafrost deposits contain roughly a quarter of the organic carbon (OC) stored in permafrost terrain. When permafrost thaws, its OC is remobilized into the (aquatic) environment where it is available for degradation, transport or burial. Aquatic or coastal environments contain sedimentary reservoirs that can serve as archives of past climatic change. As permafrost thaw is increasing throughout the Arctic, these reservoirs are important locations to assess the fate of remobilized permafrost OC. We here present compound-specific deuterium (δ2H) analysis on leaf waxes as a tool to distinguish between OC released from thawing Pleistocene permafrost (Ice Complex Deposits; ICD) and from thawing Holocene permafrost (from near-surface soils). Bulk geochemistry (%OC, δ13C, %total nitrogen; TN) was analyzed as well as the concentrations and δ2H signatures of long-chain n-alkanes (C21 to C33) and mid/long-chain n-alkanoic acids (C16 to C30) extracted from both ICD-PF samples (n = 9) and modern vegetation/O-horizon (Topsoil-PF) samples (n = 9) from across the northeast Siberian Arctic. Results show that these Topsoil-PF samples have higher %OC, higher OC/TN values, and more depleted δ13C-OC values than ICD-PF samples, suggesting that these former samples trace a fresher soil and/or vegetation source. Median concentrations of high-molecular weight n-alkanes (sum of C25-C27-C29-C31) were 210 ± 350 µg/gOC (median ± IQR) for Topsoil-PF and 250 ± 81 µg/gOC for ICD-PF samples. Long-chain n-alkanoic acids (sum of C22-C24-C26-C28) were more abundant than long-chain n-alkanes, both in Topsoil-PF samples (4700 ± 3400 µg/gOC) and in ICD samples (6630 ± 3500 µg/gOC). Whereas the two investigated sources differ on the bulk geochemical level, they are, however, virtually indistinguishable when using leaf wax concentrations and ratios. However, on the molecular-isotope level, leaf wax biomarker δ2H values are statistically different between Topsoil-PF and ICD-PF. The mean δ2H value of C29 n-alkane was −246 ± 13 ‰ (mean ± stdev) for Topsoil-PF and −280 ± 12 ‰ for ICD-PF, whereas the C31 n-alkane was −247 ± 23 ‰ for Topsoil-PF and −297 ± 15 ‰ for ICD-PF. The C28 n-alkanoic acid δ2H value was −220 ± 15 ‰ for Topsoil-PF and −267 ± 16 ‰ for ICD-PF. With a dynamic isotopic range (difference between two sources) of 34 to 50 ‰, the isotopic fingerprints of individual, abundant, biomarker molecules from leaf waxes can thus serve as end-members to distinguish between these two sources. We tested this molecular δ2H tracer along with another source-distinguishing approach, dual-carbon (δ13C-δ14C) isotope composition of bulk OC, for a surface sediment transect in the Laptev Sea. Results show that general offshore patterns along the shelf-slope transect are similar, but the source apportionment between the approaches vary, which may highlight the advantages of either. The δ2H molecular approach has the advantage that it circumvents uncertainties related to a marine end-member, yet the δ13C-δ14C approach has the advantage that it represents the bulk OC fraction thereby avoiding issues related to the molecular-bulk upscaling challenge. This study indicates that the application of δ2H leaf wax values has potential to serve as a complementary quantitative measure of the source and differential fate of OC thawed out from different permafrost compartments.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-07-02
    Description: Climate warming in Northeastern Siberia may induce thaw-remobilization of the organic carbon (OC) now held in permafrost. This study investigated the composition of terrestrial OC exported to Arctic coastal waters to both obtain a natural integration of terrestrial permafrost OC release and to further understand the fate of remobilized carbon in the extensive Siberian Shelf Seas. Application of a variety of elemental, molecular and isotopic (δ13C and Δ14C) analyses of both surface water suspended particulate matter and underlying surface sediments along a 500 km transect from Kolyma River mouth to the mid-shelf of the East Siberian Sea yielded information on the sources, degradation status and transport processes of thaw-remobilized soil OC. A three end-member dual-carbon-isotopic mixing model was applied to deduce the relative contributions from riverine, coastal erosion and marine sources. The mixing model was solved numerically using Monte Carlo simulations to obtain a fair representation of the uncertainties of both end-member composition and the end results. Riverine OC contributions to sediment OC decrease with increasing distance offshore (35±15 to 13±9%), whereas coastal erosion OC exhibits a constantly high contribution (51±1 to 60±12%) and marine OC increases offshore ward (9±7 to 36±10%). We attribute the remarkably strong imprint of OC from coastal erosion, extending up to ~500 km from the coast, to efficient offshoreward transport in these shallow waters presumably through both the benthic boundary layer and ice-rafting. There are also indications of simultaneous selective preservation of erosion OC compared to riverine OC. Molecular degradation proxies and radiocarbon contents indicated a degraded but young (Δ14C ca. −60‰ or ca. 500 14C yr) terrestrial OC pool in surface water particulate matter, underlain by a less degraded but old (Δ14C ca. −500‰ or ca. 5500 14C yr) terrestrial OC pool in bottom sediments. We suggest that the terrestrial OC fraction in surface water particulate matter is mainly derived from surface soil and recent vegetation fluvially released as buoyant organic-rich aggregates (e.g., humics), which are subjected to extensive processing during coastal transport. In contrast, terrestrial OC in the underlying sediments is postulated to originate predominantly from erosion of mineral-rich Pleistocene coasts (i.e., yedoma) and inland mineral soils. Sorptive association of this organic matter with mineral particles protects the OC from remineralization and also promotes rapid settling (ballasting) of the OC. Our findings corroborate recent studies by indicating that different Arctic surface soil OC pools exhibit distinguishing susceptibilities to degradation in coastal waters. Consequently, the general postulation of a positive feedback to global warming from remineralization of permafrost carbon may be both attenuated (by reburial of one portion) and geographically displaced (degradation of released terrestrial permafrost OC far out over the Arctic shelf seas).
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-06-08
    Description: As Arctic regions warm, the large organic carbon pool stored in permafrost becomes increasingly vulnerable to thaw and decomposition. The transfer of newly mobilized carbon to the atmosphere and its potential influence upon climate change will largely depend on the reactivity and subsequent fate of carbon delivered to aquatic ecosystems. Dissolved organic carbon (DOC) is a key regulator of aquatic metabolism and its biodegradability will determine the extent and rate of carbon release from aquatic ecosystems to the atmosphere. Knowledge of the mechanistic controls on DOC biodegradability is however currently poor due to a scarcity of long-term data sets, limited spatial coverage of available data, and methodological diversity. Here, we performed parallel biodegradable DOC (BDOC) experiments at six Arctic sites (16 experiments) using a standardized incubation protocol to examine the effect of methodological differences used as common practice in the literature. We further synthesized results from 14 aquatic and soil leachate BDOC studies from across the circum–arctic permafrost region to examine pan-Arctic trends in BDOC. An increasing extent of permafrost across the landscape resulted in higher BDOC losses in both soil and aquatic systems. We hypothesize that the unique composition of permafrost-derived DOC combined with limited prior microbial processing due to low soil temperature and relatively shorter flow path lengths and transport times, resulted in higher overall terrestrial and freshwater BDOC loss. Additionally, we found that the fraction of BDOC decreased moving down the fluvial network in continuous permafrost regions, i.e. from streams to large rivers, suggesting that highly biodegradable DOC is lost in headwater streams. We also observed a seasonal (January–December) decrease in BDOC losses in large streams and rivers, but no apparent change in smaller streams and soil leachates. We attribute this seasonal change to a combination of factors including shifts in carbon source, changing DOC residence time related to increasing thaw-depth, increasing water temperatures later in the summer, as well as decreasing hydrologic connectivity between soils and surface water as the seasons progress. Our results suggest that future, climate warming-induced shifts of continuous permafrost into discontinuous permafrost regions could affect the degradation potential of thaw-released DOC as well as its variability throughout the Arctic summer. We lastly present a recommended standardized BDOC protocol to facilitate the comparison of future work and improve our knowledge of processing and transport of DOC in a changing Arctic.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...