ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (4)
Collection
Years
  • 1
    Publication Date: 2011-08-08
    Description: The University of Bern monitors carbon dioxide (CO2) and oxygen (O2) at the High Altitude Research Station Jungfraujoch since the year 2000 by means of flasks sampling and since 2005 using a continuous in situ measurement system. This study investigates the transport of CO2 and O2 towards Jungfraujoch using backward Lagrangian Particle Dispersion Model (LPDM) simulations and utilizes CO2 and O2 signatures to classify air masses. By investigating the simulated transport patterns associated with distinct CO2 concentrations it is possible to decipher different source and sink areas over Europe. The highest CO2 concentrations, for example, were observed in winter during pollution episodes when air was transported from Northeastern Europe towards the Alps, or during south Foehn events with rapid uplift of polluted air from Northern Italy, as demonstrated in two case studies. To study the importance of air-sea exchange for variations in O2 concentrations at Jungfraujoch the correlation between CO2 and APO (Atmospheric Potential Oxygen) deviations from a seasonally varying background was analyzed. Anomalously high APO concentrations were clearly associated with air masses originating from the Atlantic Ocean, whereas low APO concentrations were found in air masses advected either from the east from the Eurasian continent in summer, or from the Eastern Mediterranean in winter. Those air masses with low APO in summer were also strongly depleted in CO2 suggesting a combination of CO2 uptake by vegetation and O2 uptake by dry summer soils. Other subsets of points in the APO-CO2 scatter plot investigated with respect to air mass origin included CO2 and APO background values and points with regular APO but anomalous CO2 concentrations. Background values were associated with free tropospheric air masses with little contact with the boundary layer during the last few days, while high or low CO2 concentrations reflect the various levels of influence of anthropogenic emissions and the biosphere. The pronounced cycles of CO2 and O2 exchanges with the biosphere and the ocean cause clusters of points and lead to a seasonal pattern.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-26
    Description: We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 yr of measurements of CO2, δ(O2/N2) and δ13CO2 are compared in this paper to assess the measurement compatibility of the three laboratories. While the average difference for the CO2 measurements between the laboratories in Bern and Jena meets the required compatibility goal as defined by the World Meteorological Organisation, the standard deviation of the average differences between all laboratories is not within the required goal. However, the obtained annual trend and seasonalities are the same within their estimated uncertainties. For δ(O2/N2) significant differences are observed between the three laboratories. The comparison for δ13CO2 yields the least compatible results and the required goals are not met between the three laboratories. Our study shows the importance of regular intercomparison exercises to identify potential biases between laboratories and the need to improve the quality of atmospheric measurements.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-07-30
    Description: We present results from an intercomparison program of CO2, δ(O2/N2) and δ13CO2 measurements from atmospheric flask samples. Flask samples are collected on a bi-weekly basis at the High Altitude Research Station Jungfraujoch in Switzerland for three European laboratories: the University of Bern, Switzerland, the University of Groningen, the Netherlands and the Max Planck Institute for Biogeochemistry in Jena, Germany. Almost 4 years of measurements of CO2, δ(O2/N2) and δ13CO2 are compared in this paper to assess the measurement compatibility of the three laboratories. While the average difference for the CO2 measurements between the laboratories in Bern and Jena meets the required compatibility goal as defined by the World Meteorological Organization, the standard deviation of the average differences between all laboratories is not within the required goal. However, the obtained annual trend and seasonalities are the same within their estimated uncertainties. For δ(O2/N2) significant differences are observed between the three laboratories. The comparison for δ13CO2 yields the least compatible results and the required goals are not met between the three laboratories. Our study shows the importance of regular intercomparison exercises to identify potential biases between laboratories and the need to improve the quality of atmospheric measurements.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-11
    Description: The University of Bern monitors carbon dioxide (CO2) and oxygen (O2) at the High Altitude Research Station Jungfraujoch since the year 2000 by means of flasks sampling and since 2005 using a continuous in situ measurement system. This study investigates the transport of CO2 and O2 towards Jungfraujoch using backward trajectories to classify the air masses with respect to their CO2 and O2 signatures. By investigating trajectories associated with distinct CO2 concentrations it is possible to decipher different source and sink areas over Europe. The highest CO2 concentrations, for example, were observed in winter during pollution episodes when air was transported from Northeastern Europe towards the Alps, or during south Foehn events with rapid uplift of polluted air from Northern Italy, as demonstrated in two case studies. To study the importance of air-sea exchange for variations in O2 concentrations at Jungfraujoch the correlation between CO2 and APO (Atmospheric Potential Oxygen) deviations from a seasonally varying background was analyzed. Anomalously high APO concentrations were clearly associated with air masses originating from the Atlantic Ocean, whereas low APO concentrations were found in air masses advected either from the east from the Eurasian continent in summer, or from the Eastern Mediterranean in winter. Those air masses with low APO in summer were also strongly depleted in CO2 suggesting a combination of CO2 uptake by vegetation and O2 uptake by dry summer soils. Other clusters of points in the APO–CO2 scatter plot investigated with respect to air mass origin included CO2 and APO background values and points with regular APO but anomalous CO2 concentrations. Background values were associated with free tropospheric air masses with little contact with the boundary layer during the last few days, while high or low CO2 concentrations reflect the various levels of influence of anthropogenic emissions and the biosphere. The pronounced cycles of CO2 and O2 exchanges with the biosphere and the ocean cause clusters of points and lead to a seasonal pattern.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...