ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus  (11)
  • 1
    Publication Date: 2016-03-17
    Description: Heterogeneity of landscape features like terrain, soil, and vegetation properties affects the partitioning of water and energy. However, it remains unclear to what extent an explicit representation of this heterogeneity at the sub-grid scale of distributed hydrological models can improve the hydrological consistency and the robustness of such models. In this study, hydrological process complexity arising from sub-grid topography heterogeneity was incorporated into the distributed mesoscale Hydrologic Model (mHM). Seven study catchments across Europe were used to test whether (1) the incorporation of additional sub-grid variability on the basis of landscape-derived response units improves model internal dynamics, (2) the application of semi-quantitative, expert-knowledge-based model constraints reduces model uncertainty, and whether (3) the combined use of sub-grid response units and model constraints improves the spatial transferability of the model. Unconstrained and constrained versions of both the original mHM and mHMtopo, which allows for topography-based sub-grid heterogeneity, were calibrated for each catchment individually following a multi-objective calibration strategy. In addition, four of the study catchments were simultaneously calibrated and their feasible parameter sets were transferred to the remaining three receiver catchments. In a post-calibration evaluation procedure the probabilities of model and transferability improvement, when accounting for sub-grid variability and/or applying expert-knowledge-based model constraints, were assessed on the basis of a set of hydrological signatures. In terms of the Euclidian distance to the optimal model, used as an overall measure of model performance with respect to the individual signatures, the model improvement achieved by introducing sub-grid heterogeneity to mHM in mHMtopo was on average 13 %. The addition of semi-quantitative constraints to mHM and mHMtopo resulted in improvements of 13 and 19 %, respectively, compared to the base case of the unconstrained mHM. Most significant improvements in signature representations were, in particular, achieved for low flow statistics. The application of prior semi-quantitative constraints further improved the partitioning between runoff and evaporative fluxes. In addition, it was shown that suitable semi-quantitative prior constraints in combination with the transfer-function-based regularization approach of mHM can be beneficial for spatial model transferability as the Euclidian distances for the signatures improved on average by 2 %. The effect of semi-quantitative prior constraints combined with topography-guided sub-grid heterogeneity on transferability showed a more variable picture of improvements and deteriorations, but most improvements were observed for low flow statistics.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-16
    Description: Groundwater is the biggest single source of high-quality fresh water worldwide, which is also continuously threatened by the changing climate. This paper is designed to investigate the response of regional groundwater system to the climate change under three global warming levels (1.5, 2, and 3 °C) in a central German basin (Nägelstedt). This investigation is conducted by deploying an integrated modeling workflow that consists of a mesoscale Hydrologic Model (mHM) and a fully-distributed groundwater model OpenGeoSys (OGS). mHM is forced by five general circulation models under three representative concentration pathways. The diffuse recharges estimated by mHM are used as outer forcings of the OGS groundwater model to compute changes in groundwater levels and travel time distributions. Simulation results indicate that under future climate scenarios, groundwater recharges and levels are expected to increase slightly. Meanwhile, the mean travel time is expected to decrease compared to the historical average. However, the ensemble simulations do not all agree on the sign of relative change. The ensemble simulations do not show a systematic relationship between the predicted change and the warming level, but they indicate an increased variability in predicted changes with the enhanced warming level from 1.5 to 3 °C. This study indicates that a higher warming level may introduce more uncertain and extreme events for the studied regional groundwater system.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-02-07
    Description: There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e. 1.5, 2, and 3 K with respect to the pre-industrial period) in rivers with a contributing area of more than 1000 km2. The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three representative concentration pathways (RCP2.6, RCP6.0, RCP8.5), five Coupled Model Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High-resolution model results are available at a spatial resolution of 5 km across the pan-European domain at a daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90 % of the time. It is determined separately for each GCM/HM combination and warming scenario. The results show that the low-flow change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean region, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from −12 % under 1.5 K, compared to the baseline period 1971–2000, to −35 % under global warming of 3 K, largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22 (1.5 K) to +45 % (3 K) in the Alpine region due to changes in snow accumulation. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. However, it is not possible to distinguish climate-induced differences in low flows between 1.5 and 2 K warming because of (1) the large inter-annual variability which prevents distinguishing statistical estimates of period-averaged changes for a given GCM/HM combination, and (2) the uncertainty in the multi-model ensemble expressed by the signal-to-noise ratio. The contribution by the GCMs to the uncertainty in the model results is generally higher than the one by the HMs. However, the uncertainty due to HMs cannot be neglected. In the Alpine, Northern, and Mediterranean regions, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration. Based on the analysis results, it is recommended (1) to use multiple HMs in climate impact studies and (2) to embrace uncertainty information on the multi-model ensemble as well as its single members in the adaptation process.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-04
    Description: Routing streamflow through a river network is a fundamental requirement to verify lateral water fluxes simulated by hydrologic and land surface models. River routing is performed at diverse resolutions ranging from few kilometers to around 1°. The presented multiscale Routing Model mRM calculates streamflow at diverse spatial and temporal resolutions. mRM solves the kinematic wave equation using a finite difference scheme. An adaptive time stepping scheme fulfilling a numerical stability criteria is introduced in this study and compared against the original parametrization of mRM that has been developed within the mesoscale Hydrologic Model (mHM). mRM requires a high-resolution river network, which is upscaled internally to the desired spatial resolution. The user can change the spatial resolution by simply changing one number in the configuration file without any further adjustments of the input data. The performance of mRM is investigated on two datasets: a high-resolution German dataset and a slightly lower resolution European dataset. The adaptive time step scheme within mRM shows a remarkable scalability compared to its predecessor. Median Kling-Gupta efficiencies change less than 3 percent when the model parametrization is transferred from 3 to 48 km resolution. mRM also exhibits seamless scalability in time, providing identical results when forced with hourly and daily runoff. The streamflow calculated over the Danube catchment by the Regional Climate Model REMO coupled to mRM is comparable at 25 and 50 km resolution. The mRM source code is freely available and highly modular facilitating an easy internal coupling in existing Earth System Models.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-25
    Description: Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intra-seasonal predictability of soil moisture to estimate silage maize yield in Germany. It is also evaluated how approaches considering soil moisture perform compared to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energy Transition. Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the inter-annual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 % other factors being equal. On the contrary, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictabilities than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.
    Electronic ISSN: 2195-9269
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-20
    Description: Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-08-10
    Description: There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90 % of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from −12 % under 1.5 K to −35 % under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22 % (1.5 K) to +45 % (3 K) in the Alpine region because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the model results is generally higher than the one by the HMs. However, the uncertainty due to HMs cannot be neglected. In the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-09-01
    Description: Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1–10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-06
    Description: Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from 1–10 km in catchment-scale applications to over 50 km in global-scale applications. Application of the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the model resolution and fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent and realistic parameter fields for land surface geophysical properties. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB and WaterGAP models are conducted to demonstrate the pitfalls of poor parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. We provide a short review of existing parameter regionalization techniques and discuss a method for obtaining seamless hydrological predictions of water fluxes and states across multiple spatial resolutions. The multiscale parameter regionalization (MPR) technique is a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. A general model protocol is presented to describe how MPR can be applied to a specific model, with an example of this application using the PCR-GLOBWB model. Applying MPR to PCR-GLOBWB substantially improves the flux-matching condition. Estimation of evapotranspiration without MPR at 5 arcmin and 30 arcmin spatial resolutions for the Rhine river basin results in a difference of approximately 29 %. Applying MPR reduce this difference to 9 %. For total soil water, the differences without and with MPR are 25 % and 7 %, respectively.
    Print ISSN: 1812-2108
    Electronic ISSN: 1812-2116
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: Routing streamflow through a river network is a fundamental requirement to verify lateral water fluxes simulated by hydrologic and land surface models. River routing is performed at diverse resolutions ranging from few kilometres to 1∘. The presented multiscale routing model mRM calculates streamflow at diverse spatial and temporal resolutions. mRM solves the kinematic wave equation using a finite difference scheme. An adaptive time stepping scheme fulfilling a numerical stability criterion is introduced in this study and compared against the original parameterisation of mRM that has been developed within the mesoscale hydrologic model (mHM). mRM requires a high-resolution river network, which is upscaled internally to the desired spatial resolution. The user can change the spatial resolution by simply changing a single number in the configuration file without any further adjustments of the input data. The performance of mRM is investigated on two datasets: a high-resolution German dataset and a slightly lower resolved European dataset. The adaptive time stepping scheme within mRM shows a remarkable scalability compared to its predecessor. Median Kling–Gupta efficiencies change less than 3 % when the model parameterisation is transferred from 3 to 48 km resolution. mRM also exhibits seamless scalability in time, providing similar results when forced with hourly and daily runoff. The streamflow calculated over the Danube catchment by the regional climate model REMO coupled to mRM reveals that the 50 km simulation shows a smaller bias with respect to observations than the simulation at 12 km resolution. The mRM source code is freely available and highly modular, facilitating easy internal coupling in existing Earth system models.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...